Пример #1
0
    def test_init(self):

        # Test incorrect arguments
        # Not a list
        with self.assertRaises(TypeError):
            gd.HierarchicalGridData(0)

        # Empty list
        with self.assertRaises(ValueError):
            gd.HierarchicalGridData([])

        # Not a list of UniformGridData
        with self.assertRaises(TypeError):
            gd.HierarchicalGridData([0])

        # Inconsistent number of dimensions
        def product1(x):
            return x

        def product2(x, y):
            return x * y

        prod_data1 = gdu.sample_function(product1, [101], [0], [3])
        prod_data2 = gdu.sample_function(product2, [101, 101], [0, 0], [3, 3])

        with self.assertRaises(ValueError):
            gd.HierarchicalGridData([prod_data1, prod_data2])

        # Only one component
        one = gd.HierarchicalGridData([prod_data1])
        # Test content
        self.assertDictEqual(
            one.grid_data_dict, {-1: [prod_data1.ghost_zones_removed()]}
        )

        grid = gd.UniformGrid([101], x0=[0], x1=[3], ref_level=2)

        # Two components at two different levels
        prod_data1_level2 = gdu.sample_function_from_uniformgrid(
            product1, grid
        )
        two = gd.HierarchicalGridData([prod_data1, prod_data1_level2])
        self.assertDictEqual(
            two.grid_data_dict,
            {
                -1: [prod_data1.ghost_zones_removed()],
                2: [prod_data1_level2.ghost_zones_removed()],
            },
        )

        # Test a good grid
        hg_many_components = gd.HierarchicalGridData(self.grid_data)
        self.assertEqual(
            hg_many_components.grid_data_dict[0], [self.expected_data]
        )

        # Test a grid with two separate components
        hg3 = gd.HierarchicalGridData(self.grid_data_two_comp)
        self.assertEqual(hg3.grid_data_dict[0], self.grid_data_two_comp)
Пример #2
0
    def test_sample_function(self):

        # Test not grid as input
        with self.assertRaises(TypeError):
            gdu.sample_function_from_uniformgrid(np.sin, 0)

        # Test 1d
        geom = gd.UniformGrid(100, x0=0, x1=2 * np.pi)
        data = np.sin(np.linspace(0, 2 * np.pi, 100))

        self.assertEqual(
            gdu.sample_function(np.sin, 100, 0, 2 * np.pi),
            gd.UniformGridData(geom, data),
        )

        # Test with additional arguments
        geom_ref_level = gd.UniformGrid(100, x0=0, x1=2 * np.pi, ref_level=0)
        self.assertEqual(
            gdu.sample_function(np.sin, 100, 0, 2 * np.pi, ref_level=0),
            gd.UniformGridData(geom_ref_level, data),
        )

        # Test 2d
        geom2d = gd.UniformGrid([100, 200], x0=[0, 1], x1=[1, 2])

        def square(x, y):
            return x * y

        # Test function takes too few arguments
        with self.assertRaises(TypeError):
            gdu.sample_function_from_uniformgrid(lambda x: x, geom2d)

        # Test function takes too many arguments
        with self.assertRaises(TypeError):
            gdu.sample_function_from_uniformgrid(square, geom)

        # Test other TypeError
        with self.assertRaises(TypeError):
            gdu.sample_function_from_uniformgrid(np.sin, geom2d)

        data2d = np.vectorize(square)(*geom2d.coordinates(as_same_shape=True))

        self.assertEqual(
            gdu.sample_function(square, [100, 200], [0, 1], [1, 2]),
            gd.UniformGridData(geom2d, data2d),
        )

        self.assertEqual(
            gdu.sample_function_from_uniformgrid(square, geom2d),
            gd.UniformGridData(geom2d, data2d),
        )
Пример #3
0
    def test_histogram(self):

        # There should be no reason why the histogram behaves differently for
        # different dimensions, so let's test it with 1d
        sin_data = gdu.sample_function(np.sin, 1000, 0, 2 * np.pi)
        sin_data_complex = sin_data + 1j * sin_data

        # Test error weights
        with self.assertRaises(TypeError):
            sin_data.histogram(weights=1)

        # Test error complex
        with self.assertRaises(ValueError):
            sin_data_complex.histogram()

        hist = sin_data.histogram()
        expected_hist = np.histogram(sin_data.data, range=(-1, 1), bins=400)

        self.assertTrue(np.allclose(expected_hist[0], hist[0]))
        self.assertTrue(np.allclose(expected_hist[1], hist[1]))

        # Test with weights
        weights = sin_data.copy()
        weights **= 2

        hist = sin_data.histogram(weights)
        expected_hist = np.histogram(
            sin_data.data, range=(-1, 1), bins=400, weights=weights.data
        )

        self.assertTrue(np.allclose(expected_hist[0], hist[0]))
        self.assertTrue(np.allclose(expected_hist[1], hist[1]))
Пример #4
0
    def test__getitem__(self):
        def square(x, y):
            return x * (y + 2)

        # These are just integers
        prod_data = gdu.sample_function(square, [11, 21], [0, 10], [10, 30])

        self.assertAlmostEqual(prod_data[2, 2], 2 * 14)
Пример #5
0
    def test_copy(self):

        sin_data = gdu.sample_function(np.sin, 1000, 0, 2 * np.pi)

        sin_data2 = sin_data.copy()

        self.assertEqual(sin_data, sin_data2)
        self.assertIsNot(sin_data.data, sin_data2.data)
        self.assertIsNot(sin_data.grid, sin_data2.grid)
Пример #6
0
    def test_plot_components_boundaries(self):

        # Test invalid data
        with self.assertRaises(TypeError):
            viz.plot_components_boundaries("bob")

        # Not 2D data
        ugd1D = gdu.sample_function(lambda x: x, [10], [0], [2])
        hg1D = gd.HierarchicalGridData([ugd1D])

        # Test invalid data
        with self.assertRaises(ValueError):
            viz.plot_components_boundaries(hg1D)

        # Now with valid data
        ugd = gdu.sample_function(lambda x, y: x + y, [10, 20], [0, 2], [2, 5])
        hg = gd.HierarchicalGridData([ugd])

        viz.plot_components_boundaries(hg)
Пример #7
0
    def test_plot_grid(self):

        ugd = gdu.sample_function(
            lambda x, y: x + y, [100, 20], [0, 1], [2, 5]
        )

        # Unknown plot type
        with self.assertRaises(ValueError):
            viz._plot_grid(ugd, plot_type="bubu")

        self.assertTrue(
            isinstance(
                viz.plot_contourf(
                    ugd, xlabel="x", ylabel="y", colorbar=True, label="test"
                ),
                matplotlib.contour.QuadContourSet,
            )
        )

        # Here we are not providing the coordinates
        with self.assertRaises(ValueError):
            viz.plot_contourf(ugd.data_xyz, logscale=True)

        # Plot_color
        self.assertTrue(
            isinstance(
                viz.plot_color(
                    ugd, xlabel="x", ylabel="y", colorbar=True, label="test"
                ),
                matplotlib.image.AxesImage,
            )
        )

        # Plot color, grid = None
        self.assertTrue(
            isinstance(
                viz.plot_color(
                    ugd.data_xyz,
                ),
                matplotlib.image.AxesImage,
            )
        )

        # Plot contour, no levels
        with self.assertRaises(ValueError):
            viz._plot_grid(ugd, plot_type="contour")

        self.assertTrue(
            isinstance(
                viz.plot_contour(
                    ugd, xlabel="x", ylabel="y", colorbar=True, label="test"
                ),
                matplotlib.contour.QuadContourSet,
            )
        )
Пример #8
0
    def test_plot_colorbar(self):

        ugd = gdu.sample_function(lambda x, y: x + y, [100, 20], [0, 1],
                                  [2, 5])

        cf = viz.plot_contourf(ugd, xlabel="x", ylabel="y", colorbar=False)

        self.assertTrue(
            isinstance(
                viz.plot_colorbar(cf, label="test"),
                matplotlib.colorbar.Colorbar,
            ))
Пример #9
0
    def test_dx_change(self):
        def product_complex(x, y):
            return (1 + 1j) * x * (y + 2)

        prod_data_complex = gdu.sample_function(
            product_complex, [301, 401], [0, 1], [3, 4]
        )

        prod_data_complex_copy = prod_data_complex.copy()

        # Test invalid new dx
        # Not a list
        with self.assertRaises(TypeError):
            prod_data_complex.dx_change(0)

        # Not a with the correct dimensions
        with self.assertRaises(ValueError):
            prod_data_complex.dx_change([0])

        # Not a integer multiple/factor
        with self.assertRaises(ValueError):
            prod_data_complex.dx_change(prod_data_complex.dx * np.pi)

        # Same dx
        self.assertEqual(
            prod_data_complex.dx_changed(prod_data_complex.dx),
            prod_data_complex,
        )

        # Half dx
        prod_data_complex.dx_change(prod_data_complex.dx / 2)
        self.assertCountEqual(
            prod_data_complex.dx, prod_data_complex_copy.dx / 2
        )
        self.assertCountEqual(
            prod_data_complex.shape, prod_data_complex_copy.shape * 2 - 1
        )
        # The data part should be tested with testing resample

        # Twice of the dx, which will bring us back to same dx,
        # so, same object we started with
        prod_data_complex.dx_change(prod_data_complex.dx * 2)
        self.assertEqual(prod_data_complex, prod_data_complex_copy)
Пример #10
0
    def test_fourier_transform(self):

        prod_data_complex = gdu.sample_function(
            lambda x, y: (1 + 1j) * x * (y + 2), [11, 21], [0, 10], [10, 30]
        )

        dx = prod_data_complex.dx
        fft_c = np.fft.fftshift(np.fft.fftn(prod_data_complex.data))
        freqs_c = [
            np.fft.fftshift(np.fft.fftfreq(11, d=dx[0])),
            np.fft.fftshift(np.fft.fftfreq(21, d=dx[1])),
        ]
        f_min_c = [freqs_c[0][0], freqs_c[1][0]]
        delta_f_c = [
            freqs_c[0][1] - freqs_c[0][0],
            freqs_c[1][1] - freqs_c[1][0],
        ]

        freq_grid_c = gd.UniformGrid(fft_c.shape, x0=f_min_c, dx=delta_f_c)
        expected_c = gd.UniformGridData(freq_grid_c, fft_c)

        self.assertEqual(expected_c, prod_data_complex.fourier_transform())
Пример #11
0
    def test_save_load(self):

        grid_file = "test_save_grid.dat"
        grid_file_bz = "test_save_grid.dat.bz2"
        grid_file_gz = "test_save_grid.dat.gz"

        def square(x, y):
            return x * y

        grid_data = gdu.sample_function(square, [100, 200], [0, 1], [1, 2])

        # Test save uncompressed
        grid_data.save(grid_file)

        # Load it
        loaded = gdu.load_UniformGridData(grid_file)

        self.assertEqual(loaded, grid_data)

        # Clean up file
        os.remove(grid_file)

        # Test compressed
        grid_data.save(grid_file_bz)
        loaded_bz = gdu.load_UniformGridData(grid_file_bz)

        self.assertEqual(loaded_bz, grid_data)

        # Clean up file
        os.remove(grid_file_bz)

        grid_data.save(grid_file_gz)
        loaded_gz = gdu.load_UniformGridData(grid_file_gz)

        self.assertEqual(loaded_gz, grid_data)

        # Clean up file
        os.remove(grid_file_gz)
Пример #12
0
    def test_percentiles(self):

        # There should be no reason why the histogram behaves differently for
        # different dimensions, so let's test it with 1d
        lin_data = gdu.sample_function(lambda x: 1.0 * x, 1000, 0, 2 * np.pi)

        # Scalar input
        self.assertAlmostEqual(lin_data.percentiles(0.5), np.pi)

        # Vector input
        self.assertTrue(
            np.allclose(
                lin_data.percentiles([0.25, 0.5]), np.array([np.pi / 2, np.pi])
            )
        )

        # Not normalized
        self.assertTrue(
            np.allclose(
                lin_data.percentiles([250, 500], relative=False),
                np.array([np.pi / 2, np.pi]),
            )
        )
Пример #13
0
    def test_preprocess_plot_functions(self):

        # We test preprocess_plot with a function that returns the argument, so
        # we can check that they are what we expect
        def func(data, **kwargs):
            return data, kwargs

        dec_func = viz.preprocess_plot(func)

        # Default
        self.assertIs(dec_func("")[1]["axis"], plt.gca())
        # Passing axis
        self.assertIs(dec_func("", axis=self.ax2)[1]["axis"], self.ax2)

        # Default
        self.assertIs(dec_func("")[1]["figure"], plt.gcf())
        # Passing figure
        self.assertIs(dec_func("", figure=self.fig)[1]["figure"], self.fig)

        dec_func_grid = viz.preprocess_plot_grid(func)

        # Check data not provided
        with self.assertRaises(TypeError):
            dec_func_grid()

        # Data numpy array, but not of dimension 2
        with self.assertRaises(ValueError):
            dec_func_grid(data=np.linspace(0, 1, 2))

        # Data numpy array of dimension 2
        self.assertTrue(
            np.array_equal(
                dec_func_grid(data=np.array([[1, 2], [3, 4]]))[0],
                np.array([[1, 2], [3, 4]]),
            )
        )

        # Check with UniformGridData

        # 2D
        ugd = gdu.sample_function(lambda x, y: x + y, [10, 20], [0, 1], [2, 5])
        # Passing coordinates
        with self.assertWarns(Warning):
            ret = dec_func_grid(
                data=ugd, coordinates=ugd.coordinates_from_grid()
            )
            self.assertTrue(np.array_equal(ret[0], ugd.data_xyz))
            self.assertIs(ret[1]["coordinates"], ugd.coordinates_from_grid())

        # Passing x0 and x1 but not shape
        with self.assertRaises(TypeError):
            dec_func_grid(data=ugd, x0=ugd.x0, x1=ugd.x1)

        # Now HierachicalGridData or resampling UniformGridData

        hg = gd.HierarchicalGridData([ugd])

        # Shape not provided
        with self.assertRaises(TypeError):
            dec_func_grid(data=hg)

        # Valid (passing x0 and x1)
        ret2 = dec_func_grid(data=hg, shape=ugd.shape, x0=ugd.x0, x1=ugd.x1)
        # Check coordinates (which checks the resampling)
        self.assertTrue(
            np.allclose(
                ret2[1]["coordinates"][0], ugd.coordinates_from_grid()[0]
            )
        )

        # Not passing x0 and x1
        ret2b = dec_func_grid(data=hg, shape=ugd.shape)
        self.assertTrue(
            np.allclose(
                ret2b[1]["coordinates"][0], ugd.coordinates_from_grid()[0]
            )
        )

        # We create an empty OneGridFunctionASCII and populate it with ugd
        cactus_ascii = cgf.OneGridFunctionASCII([], "var_name", (0, 0))

        cactus_ascii.allfiles = ["file"]
        cactus_ascii.alldata = {"file": {0: {0: {0: ugd}}}}

        # Iteration not provided
        with self.assertRaises(TypeError):
            dec_func_grid(data=cactus_ascii)

        # Check coordinates (which checks the resampling)
        ret3 = dec_func_grid(
            data=cactus_ascii, iteration=0, shape=ugd.shape, xlabel="x"
        )
        self.assertTrue(
            np.allclose(
                ret3[1]["coordinates"][0], ugd.coordinates_from_grid()[0]
            )
        )
        # Test xlabel and ylabel
        self.assertEqual(ret3[1]["xlabel"], "x")

        # Test with resample=True
        _ = dec_func_grid(
            data=cactus_ascii,
            iteration=0,
            shape=ugd.shape,
            xlabel="x",
            ylabel="y",
            resample=True,
        )

        # Test with masked data

        # HierarchicalGrid
        hg_m = km.arcsin(gd.HierarchicalGridData([ugd]))
        with self.assertWarns(Warning):
            dec_func_grid(data=hg_m, shape=[10, 10])

        ugd_m = km.arcsin(ugd)
        with self.assertWarns(Warning):
            dec_func_grid(data=ugd_m, shape=[10, 10], x0=[1, 3])
Пример #14
0
    def test_resampled(self):
        def product(x, y):
            return x * (y + 2)

        def product_complex(x, y):
            return (1 + 1j) * x * (y + 2)

        prod_data = gdu.sample_function(product, [101, 201], [0, 1], [3, 4])
        prod_data_complex = gdu.sample_function(
            product_complex, [3001, 2801], [0, 1], [3, 4]
        )
        # Check error
        with self.assertRaises(TypeError):
            prod_data.resampled(2)

        # Check same grid
        self.assertEqual(prod_data.resampled(prod_data.grid), prod_data)

        new_grid = gd.UniformGrid([51, 101], x0=[1, 2], x1=[2, 3])

        resampled = prod_data_complex.resampled(new_grid)
        exp_resampled = gdu.sample_function_from_uniformgrid(
            product_complex, new_grid
        )

        self.assertEqual(resampled.grid, new_grid)
        self.assertTrue(np.allclose(resampled.data, exp_resampled.data))

        # Check that the method of the spline is linear
        self.assertEqual(prod_data_complex.spline_imag.method, "linear")

        # Test using nearest interpolation
        resampled_nearest = prod_data_complex.resampled(
            new_grid, piecewise_constant=True
        )

        self.assertTrue(
            np.allclose(resampled_nearest.data, exp_resampled.data, atol=1e-3)
        )

        # Check that the method of the spline hasn't linear
        self.assertEqual(prod_data_complex.spline_imag.method, "linear")

        # Check single number
        self.assertAlmostEqual(resampled_nearest((2, 2.5)), 9 * (1 + 1j))

        # Check with one point
        new_grid2 = gd.UniformGrid([11, 1], x0=[1, 2], dx=[0.1, 1])
        resampled2 = prod_data_complex.resampled(new_grid2)
        prod_data_one_point = gdu.sample_function_from_uniformgrid(
            product_complex, new_grid2
        )

        self.assertEqual(resampled2, prod_data_one_point)

        # Resample from 3d to 2d

        grid_data3d = gdu.sample_function_from_uniformgrid(
            lambda x, y, z: x * (y + 2) * (z + 5),
            gd.UniformGrid([10, 20, 11], x0=[0, 1, 0], dx=[1, 2, 0.1]),
        )
        grid_2d = gd.UniformGrid([10, 20, 1], [0, 1, 0], dx=[1, 2, 0.1])

        expected_data2d = gdu.sample_function_from_uniformgrid(
            lambda x, y, z: x * (y + 2) * (z + 5), grid_2d
        )

        self.assertEqual(grid_data3d.resampled(grid_2d), expected_data2d)
Пример #15
0
    def test_splines(self):

        # Let's start with 1d.
        sin_data = gdu.sample_function(np.sin, 12000, 0, 2 * np.pi)
        sin_data_complex = sin_data + 1j * sin_data

        # Test unknown ext
        with self.assertRaises(ValueError):
            sin_data.evaluate_with_spline(1, ext=3)

        # Test k!=0!=1
        with self.assertRaises(ValueError):
            sin_data._make_spline(k=3)

        self.assertAlmostEqual(
            sin_data_complex.evaluate_with_spline([np.pi / 3]),
            (1 + 1j) * np.sin(np.pi / 3),
        )

        # Test with point in cell but outside boundary, in

        # We change the boundary values to be different from 0
        sin_data_complex_plus_one = sin_data_complex + 1 + 1j

        dx = sin_data_complex.dx[0]
        # At the boundary, we do a constant extrapolation, so the value should
        # be the boundary value
        self.assertAlmostEqual(
            sin_data_complex_plus_one.evaluate_with_spline([0 - 0.25 * dx]),
            (1 + 1j),
        )
        self.assertAlmostEqual(
            sin_data_complex_plus_one.evaluate_with_spline(
                [2 * np.pi + 0.25 * dx]
            ),
            (1 + 1j),
        )

        # Test __call__
        self.assertAlmostEqual(
            sin_data_complex([np.pi / 3]),
            (1 + 1j) * np.sin(np.pi / 3),
        )

        # Test on a point of the grid
        point = [sin_data.grid.coordinates_1d[0][2]]
        self.assertAlmostEqual(
            sin_data_complex(point),
            (1 + 1j) * np.sin(point[0]),
        )

        # Test on a point outside the grid with the lookup table
        with self.assertRaises(ValueError):
            sin_data_complex._nearest_neighbor_interpolation(
                np.array([1000]),
                ext=2,
            ),

        # Test on a point outside the grid with the lookup table and
        # ext = 1
        self.assertEqual(
            sin_data_complex.evaluate_with_spline(
                [1000], ext=1, piecewise_constant=True
            ),
            0,
        )

        # Vector input
        self.assertTrue(
            np.allclose(
                sin_data_complex.evaluate_with_spline(
                    [[np.pi / 3], [np.pi / 4]]
                ),
                np.array(
                    [
                        (1 + 1j) * np.sin(np.pi / 3),
                        (1 + 1j) * np.sin(np.pi / 4),
                    ]
                ),
            )
        )

        # Vector input in, vector input out
        self.assertEqual(sin_data_complex([[1]]).shape, (1,))

        # Now 2d
        def product(x, y):
            return x * (y + 2)

        prod_data = gdu.sample_function(product, [101, 101], [0, 0], [3, 3])
        prod_data_complex = (1 + 1j) * prod_data

        self.assertAlmostEqual(
            prod_data_complex.evaluate_with_spline((2, 3)),
            (1 + 1j) * 10,
        )

        # Vector input
        self.assertTrue(
            np.allclose(
                prod_data_complex.evaluate_with_spline([(1, 0), (2, 3)]),
                np.array([(1 + 1j) * 2, (1 + 1j) * 10]),
            )
        )

        self.assertTrue(
            np.allclose(
                prod_data_complex.evaluate_with_spline(
                    [[(1, 0), (2, 3)], [(3, 1), (0, 0)]]
                ),
                np.array([[(1 + 1j) * 2, (1 + 1j) * 10], [(1 + 1j) * 9, 0]]),
            )
        )

        # Real data
        self.assertAlmostEqual(
            prod_data.evaluate_with_spline((2, 3)),
            10,
        )

        # Extrapolate outside
        self.assertAlmostEqual(
            prod_data.evaluate_with_spline((20, 20), ext=1), 0
        )

        self.assertAlmostEqual(
            prod_data_complex.evaluate_with_spline((20, 20), ext=1), 0
        )

        self.assertTrue(prod_data_complex.spline_real.bounds_error)
        self.assertTrue(prod_data_complex.spline_imag.bounds_error)

        # Test on a UniformGrid
        sin_data = gdu.sample_function(np.sin, 12000, 0, 2 * np.pi)
        linspace = gd.UniformGrid(101, x0=0, x1=3)
        output = sin_data(linspace)
        self.assertTrue(
            np.allclose(output.data, np.sin(linspace.coordinates()))
        )

        # Incompatible dimensions
        with self.assertRaises(ValueError):
            sin_data(gd.UniformGrid([101, 201], x0=[0, 1], x1=[3, 4]))

        # Test with grid that has a flat dimension
        prod_data_flat = gdu.sample_function_from_uniformgrid(
            product, gd.UniformGrid([101, 1], x0=[0, 0], dx=[1, 3])
        )

        # y = 1 is in the flat cell, where y = 0, and here we are using nearest
        # interpolation
        self.assertAlmostEqual(prod_data_flat((1, 1)), 2)
        # Vector
        self.assertCountEqual(prod_data_flat([(1, 1), (2, 1)]), [2, 4])