def test_basic_complex(self): import kvxopt a = kvxopt.matrix([1, -2, 3]) b = kvxopt.matrix([1.0, -2.0, 3.0]) c = kvxopt.matrix([1.0 + 2j, 1 - 2j, 0 + 1j]) d = kvxopt.spmatrix( [complex(1.0, 0.0), complex(0.0, 1.0), complex(2.0, -1.0)], [0, 1, 3], [0, 2, 3], (4, 4)) e = kvxopt.spmatrix( [complex(1.0, 0.0), complex(0.0, 1.0), complex(2.0, -1.0)], [2, 3, 3], [1, 2, 3], (4, 4)) self.assertAlmostEqualLists(list(kvxopt.div(b, c)), [0.2 - 0.4j, -0.4 - 0.8j, -3j]) self.assertAlmostEqualLists(list(kvxopt.div(b, 2.0j)), [-0.5j, 1j, -1.5j]) self.assertAlmostEqualLists(list(kvxopt.div(a, c)), [0.2 - 0.4j, -0.4 - 0.8j, -3j]) self.assertAlmostEqualLists(list(kvxopt.div(c, a)), [(1 + 2j), (-0.5 + 1j), 0.3333333333333333j]) self.assertAlmostEqualLists(list(kvxopt.div(c, c)), [1.0, 1.0, 1.0]) self.assertAlmostEqualLists(list(kvxopt.div(a, 2.0j)), [-0.5j, 1j, -1.5j]) self.assertAlmostEqualLists(list(kvxopt.div(c, 1.0j)), [2 - 1j, -2 - 1j, 1 + 0j]) self.assertAlmostEqualLists(list(kvxopt.div(1j, c)), [0.4 + 0.2j, -0.4 + 0.2j, 1 + 0j]) self.assertTrue(len(d) + len(e) == len(kvxopt.sparse([d, e]))) self.assertTrue(len(d) + len(e) == len(kvxopt.sparse([[d], [e]])))
def ilp(c, G, h, A=None, b=None, I=None, taskfile=None, **kwargs): """ Solves the mixed integer LP minimize c'*x subject to G*x + s = h A*x = b s >= 0 xi integer, forall i in I using MOSEK 8. solsta, x = ilp(c, G, h, A=None, b=None, I=None, taskfile=None). Input arguments G is m x n, h is m x 1, A is p x n, b is p x 1. G and A must be dense or sparse 'd' matrices. h and b are dense 'd' matrices with one column. The default values for A and b are empty matrices with zero rows. I is a Python set with indices of integer elements of x. By default all elements in x are constrained to be integer, i.e., the default value of I is I = set(range(n)) Dual variables are not returned for MOSEK. Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.integer_optimal, then x contains the solution. If solsta is mosek.solsta.unknown, then x is None. Other return values for solsta include: mosek.solsta.near_integer_optimal in which case the x value may not be well-defined, c.f., section 17.48 of the MOSEK Python API manual. x is the solution Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log: 0} see the MOSEK Python API manual. """ with mosek.Env() as env: if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1: raise TypeError("'c' must be a dense column matrix") n = c.size[0] if n < 1: raise ValueError("number of variables must be at least 1") if (type(G) is not matrix and type(G) is not spmatrix) or \ G.typecode != 'd' or G.size[1] != n: raise TypeError("'G' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) m = G.size[0] if m == 0: raise ValueError("m cannot be 0") if type(h) is not matrix or h.typecode != 'd' or h.size != (m, 1): raise TypeError("'h' must be a 'd' matrix of size (%d,1)" % m) if A is None: A = spmatrix([], [], [], (0, n), 'd') if (type(A) is not matrix and type(A) is not spmatrix) or \ A.typecode != 'd' or A.size[1] != n: raise TypeError("'A' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) p = A.size[0] if b is None: b = matrix(0.0, (0, 1)) if type(b) is not matrix or b.typecode != 'd' or b.size != (p, 1): raise TypeError("'b' must be a dense matrix of size (%d,1)" % p) if I is None: I = set(range(n)) if type(I) is not set: raise TypeError("invalid argument for integer index set") for i in I: if type(i) is not int: raise TypeError("invalid integer index set I") if len(I) > 0 and min(I) < 0: raise IndexError("negative element in integer index set I") if len(I) > 0 and max(I) > n - 1: raise IndexError( "maximum element in in integer index set I is larger than n-1") bkc = m * [mosek.boundkey.up] + p * [mosek.boundkey.fx] blc = m * [-inf] + [bi for bi in b] buc = list(h) + list(b) bkx = n * [mosek.boundkey.fr] blx = n * [-inf] bux = n * [+inf] colptr, asub, acof = sparse([G, A]).CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0, 0) as task: task.set_Stream(mosek.streamtype.log, streamprinter) # set MOSEK options options = kwargs.get('options', globals()['options']) for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: " + str(param)) task.inputdata( m + p, # number of constraints n, # number of variables list(c), # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) task.putobjsense(mosek.objsense.minimize) # Define integer variables if len(I) > 0: task.putvartypelist(list(I), len(I) * [mosek.variabletype.type_int]) task.putintparam(mosek.iparam.mio_mode, mosek.miomode.satisfied) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary(mosek.streamtype.msg) if len(I) > 0: solsta = task.getsolsta(mosek.soltype.itg) else: solsta = task.getsolsta(mosek.soltype.bas) x = n * [0.0] if len(I) > 0: task.getsolutionslice(mosek.soltype.itg, mosek.solitem.xx, 0, n, x) else: task.getsolutionslice(mosek.soltype.bas, mosek.solitem.xx, 0, n, x) x = matrix(x) if (solsta is mosek.solsta.unknown): return (solsta, None) else: return (solsta, x)
def qp(P, q, G=None, h=None, A=None, b=None, taskfile=None, **kwargs): """ Solves a quadratic program minimize (1/2)*x'*P*x + q'*x subject to G*x <= h A*x = b. using MOSEK 8. solsta, x, z, y = qp(P, q, G=None, h=None, A=None, b=None, taskfile=None) Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, y, z) contains the primal-dual solution. If solsta is mosek.solsta.prim_infeas_cer, then (x, y, z) is a certificate of primal infeasibility. If solsta is mosek.solsta.dual_infeas_cer, then (x, y, z) is a certificate of dual infeasibility. If solsta is mosek.solsta.unknown, then (x, y, z) are all None. Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, z, y the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log: 0} see the MOSEK Python API manual. Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. """ with mosek.Env() as env: if (type(P) is not matrix and type(P) is not spmatrix) or \ P.typecode != 'd' or P.size[0] != P.size[1]: raise TypeError("'P' must be a square dense or sparse 'd' matrix ") n = P.size[0] if n < 1: raise ValueError("number of variables must be at least 1") if type(q) is not matrix or q.typecode != 'd' or q.size != (n, 1): raise TypeError("'q' must be a 'd' matrix of size (%d,1)" % n) if G is None: G = spmatrix([], [], [], (0, n), 'd') if (type(G) is not matrix and type(G) is not spmatrix) or \ G.typecode != 'd' or G.size[1] != n: raise TypeError("'G' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) m = G.size[0] if h is None: h = matrix(0.0, (0, 1)) if type(h) is not matrix or h.typecode != 'd' or h.size != (m, 1): raise TypeError("'h' must be a 'd' matrix of size (%d,1)" % m) if A is None: A = spmatrix([], [], [], (0, n), 'd') if (type(A) is not matrix and type(A) is not spmatrix) or \ A.typecode != 'd' or A.size[1] != n: raise TypeError("'A' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) p = A.size[0] if b is None: b = matrix(0.0, (0, 1)) if type(b) is not matrix or b.typecode != 'd' or b.size != (p, 1): raise TypeError("'b' must be a dense matrix of size (%d,1)" % p) if m + p == 0: raise ValueError("m + p must be greater than 0") c = list(q) bkc = m * [mosek.boundkey.up] + p * [mosek.boundkey.fx] blc = m * [-inf] + [bi for bi in b] buc = list(h) + list(b) bkx = n * [mosek.boundkey.fr] blx = n * [-inf] bux = n * [+inf] colptr, asub, acof = sparse([G, A]).CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0, 0) as task: task.set_Stream(mosek.streamtype.log, streamprinter) # set MOSEK options options = kwargs.get('options', globals()['options']) for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: " + str(param)) task.inputdata( m + p, # number of constraints n, # number of variables c, # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) Ps = sparse(P) I, J = Ps.I, Ps.J tril = [k for k in range(len(I)) if I[k] >= J[k]] task.putqobj(list(I[tril]), list(J[tril]), list(Ps.V[tril])) task.putobjsense(mosek.objsense.minimize) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary(mosek.streamtype.msg) solsta = task.getsolsta(mosek.soltype.itr) x = n * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, n, x) x = matrix(x) if m != 0: z = m * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, m, z) z = matrix(z) else: z = matrix(0.0, (0, 1)) if p != 0: yu, yl = p * [0.0], p * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, m, m + p, yu) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, m, m + p, yl) y = matrix(yu) - matrix(yl) else: y = matrix(0.0, (0, 1)) if (solsta is mosek.solsta.unknown): return (solsta, None, None, None) else: return (solsta, x, z, y)
def socp(c, Gl=None, hl=None, Gq=None, hq=None, taskfile=None, **kwargs): """ Solves a pair of primal and dual SOCPs minimize c'*x subject to Gl*x + sl = hl Gq[k]*x + sq[k] = hq[k], k = 0, ..., N-1 sl >= 0, sq[k] >= 0, k = 0, ..., N-1 maximize -hl'*zl - sum_k hq[k]'*zq[k] subject to Gl'*zl + sum_k Gq[k]'*zq[k] + c = 0 zl >= 0, zq[k] >= 0, k = 0, ..., N-1. using MOSEK 8. solsta, x, zl, zq = socp(c, Gl = None, hl = None, Gq = None, hq = None, taskfile=None) Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, zl, zq) contains the primal-dual solution. If solsta is mosek.solsta.prim_infeas_cer, then (x, zl, zq) is a certificate of dual infeasibility. If solsta is mosek.solsta.dual_infeas_cer, then (x, zl, zq) is a certificate of primal infeasibility. If solsta is mosek.solsta.unknown, then (x, zl, zq) are all None Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, zl, zq the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log: 0} see the MOSEK Python API manual. Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. """ with mosek.Env() as env: if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1: raise TypeError("'c' must be a dense column matrix") n = c.size[0] if n < 1: raise ValueError("number of variables must be at least 1") if Gl is None: Gl = spmatrix([], [], [], (0, n), tc='d') if (type(Gl) is not matrix and type(Gl) is not spmatrix) or \ Gl.typecode != 'd' or Gl.size[1] != n: raise TypeError("'Gl' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) ml = Gl.size[0] if hl is None: hl = matrix(0.0, (0, 1)) if type(hl) is not matrix or hl.typecode != 'd' or \ hl.size != (ml,1): raise TypeError("'hl' must be a dense 'd' matrix of " \ "size (%d,1)" %ml) if Gq is None: Gq = [] if type(Gq) is not list or [ G for G in Gq if (type(G) is not matrix and type(G) is not spmatrix) or G.typecode != 'd' or G.size[1] != n ]: raise TypeError("'Gq' must be a list of sparse or dense 'd' "\ "matrices with %d columns" %n) mq = [G.size[0] for G in Gq] a = [k for k in range(len(mq)) if mq[k] == 0] if a: raise TypeError("the number of rows of Gq[%d] is zero" % a[0]) if hq is None: hq = [] if type(hq) is not list or len(hq) != len(mq) or [ h for h in hq if (type(h) is not matrix and type(h) is not spmatrix) or h.typecode != 'd' ]: raise TypeError("'hq' must be a list of %d dense or sparse "\ "'d' matrices" %len(mq)) a = [k for k in range(len(mq)) if hq[k].size != (mq[k], 1)] if a: k = a[0] raise TypeError("'hq[%d]' has size (%d,%d). Expected size "\ "is (%d,1)." %(k, hq[k].size[0], hq[k].size[1], mq[k])) N = ml + sum(mq) h = matrix(0.0, (N, 1)) if type(Gl) is matrix or [Gk for Gk in Gq if type(Gk) is matrix]: G = matrix(0.0, (N, n)) else: G = spmatrix([], [], [], (N, n), 'd') h[:ml] = hl G[:ml, :] = Gl ind = ml for k in range(len(mq)): h[ind:ind + mq[k]] = hq[k] G[ind:ind + mq[k], :] = Gq[k] ind += mq[k] bkc = n * [mosek.boundkey.fx] blc = list(-c) buc = list(-c) bkx = ml * [mosek.boundkey.lo] + sum(mq) * [mosek.boundkey.fr] blx = ml * [0.0] + sum(mq) * [-inf] bux = N * [+inf] c = -h colptr, asub, acof = sparse([G.T]).CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0, 0) as task: task.set_Stream(mosek.streamtype.log, streamprinter) # set MOSEK options options = kwargs.get('options', globals()['options']) for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: " + str(param)) task.inputdata( n, # number of constraints N, # number of variables list(c), # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) task.putobjsense(mosek.objsense.maximize) for k in range(len(mq)): task.appendcone( mosek.conetype.quad, 0.0, list(range(ml + sum(mq[:k]), ml + sum(mq[:k + 1])))) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary(mosek.streamtype.msg) solsta = task.getsolsta(mosek.soltype.itr) xu, xl, zq = n * [0.0], n * [0.0], sum(mq) * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, 0, n, xl) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, n, xu) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, ml, N, zq) x = matrix(xu) - matrix(xl) zq = [ matrix(zq[sum(mq[:k]):sum(mq[:k + 1])]) for k in range(len(mq)) ] if ml: zl = ml * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, ml, zl) zl = matrix(zl) else: zl = matrix(0.0, (0, 1)) if (solsta is mosek.solsta.unknown): return (solsta, None, None, None) else: return (solsta, x, zl, zq)
def lp(c, G, h, A=None, b=None, taskfile=None, **kwargs): """ Solves a pair of primal and dual LPs minimize c'*x maximize -h'*z - b'*y subject to G*x + s = h subject to G'*z + A'*y + c = 0 A*x = b z >= 0. s >= 0 using MOSEK 8. (solsta, x, z, y) = lp(c, G, h, A=None, b=None). Input arguments c is n x 1, G is m x n, h is m x 1, A is p x n, b is p x 1. G and A must be dense or sparse 'd' matrices. c, h and b are dense 'd' matrices with one column. The default values for A and b are empty matrices with zero rows. Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, y, z) contains the primal-dual solution. If solsta is mosek.solsta.prim_infeas_cer, then (x, y, z) is a certificate of primal infeasibility. If solsta is mosek.solsta.dual_infeas_cer, then (x, y, z) is a certificate of dual infeasibility. If solsta is mosek.solsta.unknown, then (x, y, z) are all None. Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, y, z the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary. For example, the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log: 0} see the MOSEK Python API manual. """ with mosek.Env() as env: if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1: raise TypeError("'c' must be a dense column matrix") n = c.size[0] if n < 1: raise ValueError("number of variables must be at least 1") if (type(G) is not matrix and type(G) is not spmatrix) or \ G.typecode != 'd' or G.size[1] != n: raise TypeError("'G' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) m = G.size[0] if m == 0: raise ValueError("m cannot be 0") if type(h) is not matrix or h.typecode != 'd' or h.size != (m, 1): raise TypeError("'h' must be a 'd' matrix of size (%d,1)" % m) if A is None: A = spmatrix([], [], [], (0, n), 'd') if (type(A) is not matrix and type(A) is not spmatrix) or \ A.typecode != 'd' or A.size[1] != n: raise TypeError("'A' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) p = A.size[0] if b is None: b = matrix(0.0, (0, 1)) if type(b) is not matrix or b.typecode != 'd' or b.size != (p, 1): raise TypeError("'b' must be a dense matrix of size (%d,1)" % p) bkc = m * [mosek.boundkey.up] + p * [mosek.boundkey.fx] blc = m * [-inf] + [bi for bi in b] buc = list(h) + list(b) bkx = n * [mosek.boundkey.fr] blx = n * [-inf] bux = n * [+inf] colptr, asub, acof = sparse([G, A]).CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0, 0) as task: task.set_Stream(mosek.streamtype.log, streamprinter) # set MOSEK options options = kwargs.get('options', globals()['options']) for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: " + str(param)) task.inputdata( m + p, # number of constraints n, # number of variables list(c), # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) task.putobjsense(mosek.objsense.minimize) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary(mosek.streamtype.msg) solsta = task.getsolsta(mosek.soltype.bas) x, z = n * [0.0], m * [0.0] task.getsolutionslice(mosek.soltype.bas, mosek.solitem.xx, 0, n, x) task.getsolutionslice(mosek.soltype.bas, mosek.solitem.suc, 0, m, z) x, z = matrix(x), matrix(z) if p != 0: yu, yl = p * [0.0], p * [0.0] task.getsolutionslice(mosek.soltype.bas, mosek.solitem.suc, m, m + p, yu) task.getsolutionslice(mosek.soltype.bas, mosek.solitem.slc, m, m + p, yl) y = matrix(yu) - matrix(yl) else: y = matrix(0.0, (0, 1)) if (solsta is mosek.solsta.unknown): return (solsta, None, None, None) else: return (solsta, x, z, y)
def conelp(c, G, h, dims=None, taskfile=None, **kwargs): """ Solves a pair of primal and dual SOCPs minimize c'*x subject to G*x + s = h s >= 0 maximize -h'*z subject to G'*z + c = 0 z >= 0 using MOSEK 8. The inequalities are with respect to a cone C defined as the Cartesian product of N + M + 1 cones: C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. The first cone C_0 is the nonnegative orthant of dimension ml. The next N cones are second order cones of dimension mq[0], ..., mq[N-1]. The second order cone of dimension m is defined as { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. The next M cones are positive semidefinite cones of order ms[0], ..., ms[M-1] >= 0. The formats of G and h are identical to that used in solvers.conelp(). Input arguments. c is a dense 'd' matrix of size (n,1). dims is a dictionary with the dimensions of the components of C. It has three fields. - dims['l'] = ml, the dimension of the nonnegative orthant C_0. (ml >= 0.) - dims['q'] = mq = [ mq[0], mq[1], ..., mq[N-1] ], a list of N integers with the dimensions of the second order cones C_1, ..., C_N. (N >= 0 and mq[k] >= 1.) - dims['s'] = ms = [ ms[0], ms[1], ..., ms[M-1] ], a list of M integers with the orders of the semidefinite cones C_{N+1}, ..., C_{N+M}. (M >= 0 and ms[k] >= 0.) The default value of dims is {'l': G.size[0], 'q': [], 's': []}. G is a dense or sparse 'd' matrix of size (K,n), where K = ml + mq[0] + ... + mq[N-1] + ms[0]**2 + ... + ms[M-1]**2. Each column of G describes a vector v = ( v_0, v_1, ..., v_N, vec(v_{N+1}), ..., vec(v_{N+M}) ) in V = R^ml x R^mq[0] x ... x R^mq[N-1] x S^ms[0] x ... x S^ms[M-1] stored as a column vector [ v_0; v_1; ...; v_N; vec(v_{N+1}); ...; vec(v_{N+M}) ]. Here, if u is a symmetric matrix of order m, then vec(u) is the matrix u stored in column major order as a vector of length m**2. We use BLAS unpacked 'L' storage, i.e., the entries in vec(u) corresponding to the strictly upper triangular entries of u are not referenced. h is a dense 'd' matrix of size (K,1), representing a vector in V, in the same format as the columns of G. A is a dense or sparse 'd' matrix of size (p,n). The default value is a sparse 'd' matrix of size (0,n). b is a dense 'd' matrix of size (p,1). The default value is a dense 'd' matrix of size (0,1). Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, zl, zq, zs) contains the primal-dual solution. If solsta is moseksolsta.prim_infeas_cer, then (x, zl, zq, zs) is a certificate of dual infeasibility. If solsta is moseksolsta.dual_infeas_cer, then (x, zl, zq, zs) is a certificate of primal infeasibility. If solsta is mosek.solsta.unknown, then (x, zl, zq, zs) are all None Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, z the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log:0} see the MOSEK Python API manual. """ with mosek.Env() as env: if dims is None: (solsta, x, y, z) = lp(c, G, h) return (solsta, x, z, None) N, n = G.size ml, mq, ms = dims['l'], dims['q'], [k * k for k in dims['s']] cdim = ml + sum(mq) + sum(ms) if cdim == 0: raise ValueError("ml+mq+ms cannot be 0") # Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq = [dims['l']] for k in dims['q']: indq = indq + [indq[-1] + k] # Data for the kth 's' constraint are found in rows indq[-1] + (inds[k]:inds[k+1]) of G. inds = [0] for k in dims['s']: inds = inds + [inds[-1] + k * k] if type(h) is not matrix or h.typecode != 'd' or h.size[1] != 1: raise TypeError("'h' must be a 'd' matrix with 1 column") if type(G) is matrix or type(G) is spmatrix: if G.typecode != 'd' or G.size[0] != cdim: raise TypeError("'G' must be a 'd' matrix with %d rows " % cdim) if h.size[0] != cdim: raise TypeError("'h' must have %d rows" % cdim) else: raise TypeError("'G' must be a matrix") if len(dims['q']) and min(dims['q']) < 1: raise TypeError("dimensions of quadratic cones must be positive") if len(dims['s']) and min(dims['s']) < 1: raise TypeError( "dimensions of semidefinite cones must be positive") bkc = n * [mosek.boundkey.fx] blc = list(-c) buc = list(-c) dimx = ml + sum(mq) bkx = ml * [mosek.boundkey.lo] + sum(mq) * [mosek.boundkey.fr] blx = ml * [0.0] + sum(mq) * [-inf] bux = dimx * [+inf] c = list(-h) cl, cs = c[:dimx], sparse(c[dimx:]) Gl, Gs = sparse(G[:dimx, :]), sparse(G[dimx:, :]) colptr, asub, acof = Gl.T.CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0, 0) as task: task.set_Stream(mosek.streamtype.log, streamprinter) # set MOSEK options options = kwargs.get('options', globals()['options']) for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: " + str(param)) task.inputdata( n, # number of constraints dimx, # number of variables cl, # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) task.putobjsense(mosek.objsense.maximize) numbarvar = len(dims['s']) task.appendbarvars(dims['s']) barcsubj, barcsubk, barcsubl = (inds[-1]) * [0], ( inds[-1]) * [0], (inds[-1]) * [0] barcval = [-h[indq[-1] + k] for k in range(inds[0], inds[-1])] for s in range(numbarvar): for (k, idx) in enumerate(range(inds[s], inds[s + 1])): barcsubk[idx] = k // dims['s'][s] barcsubl[idx] = k % dims['s'][s] barcsubj[idx] = s # filter out upper triangular part trilidx = [ idx for idx in range(len(barcsubk)) if barcsubk[idx] >= barcsubl[idx] ] barcsubj = [barcsubj[k] for k in trilidx] barcsubk = [barcsubk[k] for k in trilidx] barcsubl = [barcsubl[k] for k in trilidx] barcval = [barcval[k] for k in trilidx] task.putbarcblocktriplet(len(trilidx), barcsubj, barcsubk, barcsubl, barcval) Gst = Gs.T barasubi = len(Gst) * [0] barasubj = len(Gst) * [0] barasubk = len(Gst) * [0] barasubl = len(Gst) * [0] baraval = len(Gst) * [0.0] colptr, row, val = Gst.CCS for s in range(numbarvar): for j in range(ms[s]): for idx in range(colptr[inds[s] + j], colptr[inds[s] + j + 1]): barasubi[idx] = row[idx] barasubj[idx] = s barasubk[idx] = j // dims['s'][s] barasubl[idx] = j % dims['s'][s] baraval[idx] = val[idx] # filter out upper triangular part trilidx = [ idx for (idx, (k, l)) in enumerate(zip(barasubk, barasubl)) if k >= l ] barasubi = [barasubi[k] for k in trilidx] barasubj = [barasubj[k] for k in trilidx] barasubk = [barasubk[k] for k in trilidx] barasubl = [barasubl[k] for k in trilidx] baraval = [baraval[k] for k in trilidx] task.putbarablocktriplet(len(trilidx), barasubi, barasubj, barasubk, barasubl, baraval) for k in range(len(mq)): task.appendcone(mosek.conetype.quad, 0.0, range(ml + sum(mq[:k]), ml + sum(mq[:k + 1]))) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary(mosek.streamtype.msg) solsta = task.getsolsta(mosek.soltype.itr) xu, xl, zq = n * [0.0], n * [0.0], sum(mq) * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, 0, n, xl) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, n, xu) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, ml, dimx, zq) x = matrix(xu) - matrix(xl) zq = matrix(zq) for s in range(numbarvar): xx = (dims['s'][s] * (dims['s'][s] + 1) >> 1) * [0.0] task.getbarxj(mosek.soltype.itr, s, xx) xs = matrix(0.0, (dims['s'][s], dims['s'][s])) idx = 0 for j in range(dims['s'][s]): for i in range(j, dims['s'][s]): xs[i, j] = xx[idx] if i != j: xs[j, i] = xx[idx] idx += 1 zq = matrix([zq, xs[:]]) if ml: zl = ml * [0.0] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, ml, zl) zl = matrix(zl) else: zl = matrix(0.0, (0, 1)) if (solsta is mosek.solsta.unknown): return (solsta, None, None) else: return (solsta, x, matrix([zl, zq]))