Пример #1
0
  def testPreprocessStreamInferenceModeTFandTFLite(self,
                                                   preprocess,
                                                   feature_type,
                                                   model_name='gru'):
    # Validate that model with different preprocessing
    # can be converted to stream inference mode with TF and TFLite.
    params = model_params.HOTWORD_MODEL_PARAMS[model_name]
    # set parameters to test
    params.preprocess = preprocess
    params.feature_type = feature_type
    params = model_flags.update_flags(params)

    # create model
    model = models.MODELS[params.model_name](params)

    # convert TF non streaming model to TFLite streaming inference
    # with external states
    self.assertTrue(utils.model_to_tflite(
        self.sess, model, params, modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE))

    # convert TF non streaming model to TF streaming with external states
    self.assertTrue(utils.to_streaming_inference(
        model, params, modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE))

    # convert TF non streaming model to TF streaming with internal states
    self.assertTrue(utils.to_streaming_inference(
        model, params, modes.Modes.STREAM_INTERNAL_STATE_INFERENCE))
Пример #2
0
    def testToNonStreamInferenceTFandTFLite(self, model_name='svdf'):
        """Validate that model can be converted to non stream inference mode."""
        params = _HOTWORD_MODEL_PARAMS[model_name]
        params = model_flags.update_flags(params)

        # create model
        model = models.MODELS[params.model_name](params)

        # convert TF non streaming model to TF non streaming inference model
        # it will disable dropouts
        self.assertTrue(
            utils.to_streaming_inference(model, params,
                                         Modes.NON_STREAM_INFERENCE))

        # convert TF non streaming model to TFLite non streaming inference
        self.assertTrue(
            utils.model_to_tflite(self.sess, model, params,
                                  Modes.NON_STREAM_INFERENCE))
Пример #3
0
  def test_ds_tc_resnet_stream_tflite(self):

    tflite_streaming_model = utils.model_to_tflite(
        self.sess, self.model, self.params,
        Modes.STREAM_EXTERNAL_STATE_INFERENCE)

    interpreter = tf.lite.Interpreter(model_content=tflite_streaming_model)
    interpreter.allocate_tensors()

    # before processing new test sequence we reset model state
    inputs = []
    for detail in interpreter.get_input_details():
      inputs.append(np.zeros(detail['shape'], dtype=np.float32))

    stream_out = test.run_stream_inference_classification_tflite(
        self.params, interpreter, self.input_data, inputs)

    self.assertAllClose(stream_out, self.non_stream_out, atol=1e-5)
Пример #4
0
    def _testTFLite(self,
                    preprocess='raw',
                    feature_type='mfcc_op',
                    model_name='svdf'):
        params = model_params.HOTWORD_MODEL_PARAMS[model_name]

        # set parameters to test
        params.preprocess = preprocess
        params.feature_type = feature_type
        params = model_flags.update_flags(params)

        # create model
        model = models.MODELS[params.model_name](params)

        # convert TF non streaming model to TFLite non streaming inference
        self.assertTrue(
            utils.model_to_tflite(self.sess, model, params,
                                  Modes.NON_STREAM_INFERENCE))
Пример #5
0
def convert_model_tflite(flags,
                         folder,
                         mode,
                         fname,
                         weights_name='best_weights',
                         optimizations=None):
    """Convert model to streaming and non streaming TFLite.

  Args:
      flags: model and data settings
      folder: folder where converted model will be saved
      mode: inference mode
      fname: file name of converted model
      weights_name: file name with model weights
      optimizations: list of optimization options
  """
    tf.reset_default_graph()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    tf.keras.backend.set_session(sess)
    tf.keras.backend.set_learning_phase(0)
    flags.batch_size = 1  # set batch size for inference
    flags.approximate_gelu = True  # use approximate GELU in TFLite
    model = models.MODELS[flags.model_name](flags)
    weights_path = os.path.join(flags.train_dir, weights_name)
    model.load_weights(weights_path).expect_partial()
    # convert trained model to non streaming TFLite stateless
    # to finish other tests we do not stop program if exception happen here
    path_model = os.path.join(flags.train_dir, folder)
    if not os.path.exists(path_model):
        os.makedirs(path_model)
    try:
        with open(os.path.join(path_model, fname), 'wb') as fd:
            fd.write(
                utils.model_to_tflite(sess, model, flags, mode, path_model,
                                      optimizations))
    except IOError as e:
        logging.warning('FAILED to write file: %s', e)
    except (ValueError, AttributeError, RuntimeError, TypeError) as e:
        logging.warning('FAILED to convert to mode %s, tflite: %s', mode, e)
Пример #6
0
    def _testTFLite(self,
                    preprocess='raw',
                    feature_type='mfcc_tf',
                    use_tf_fft=False,
                    model_name='svdf'):
        params = model_params.HOTWORD_MODEL_PARAMS[model_name]
        params.clip_duration_ms = 100  # make it shorter for testing

        # set parameters to test
        params.preprocess = preprocess
        params.feature_type = feature_type
        params.use_tf_fft = use_tf_fft
        params = model_flags.update_flags(params)

        # create model
        model = models.MODELS[params.model_name](params)

        # convert TF non streaming model to TFLite non streaming inference
        self.assertTrue(
            utils.model_to_tflite(self.sess, model, params,
                                  modes.Modes.NON_STREAM_INFERENCE))
Пример #7
0
    def testToStreamInferenceModeTFandTFLite(self, model_name='gru'):
        """Validate that model can be converted to any streaming inference mode."""
        params = _HOTWORD_MODEL_PARAMS[model_name]
        params = model_flags.update_flags(params)

        # create model
        model = models.MODELS[params.model_name](params)

        # convert TF non streaming model to TFLite streaming inference
        # with external states
        self.assertTrue(
            utils.model_to_tflite(self.sess, model, params,
                                  Modes.STREAM_EXTERNAL_STATE_INFERENCE))

        # convert TF non streaming model to TF streaming with external states
        self.assertTrue(
            utils.to_streaming_inference(
                model, params, Modes.STREAM_EXTERNAL_STATE_INFERENCE))

        # convert TF non streaming model to TF streaming with internal states
        self.assertTrue(
            utils.to_streaming_inference(
                model, params, Modes.STREAM_INTERNAL_STATE_INFERENCE))
    def test_ds_tc_resnet_stream_internal_tflite(self):
        """Test tflite streaming with internal state."""
        test_utils.set_seed(123)
        tf.keras.backend.set_learning_phase(0)
        params = utils.ds_tc_resnet_model_params(True)

        model = ds_tc_resnet.model(params)
        model.summary()

        input_data = np.random.rand(params.batch_size, params.desired_samples)

        # run non streaming inference
        non_stream_out = model.predict(input_data)

        tflite_streaming_model = utils.model_to_tflite(
            None, model, params, Modes.STREAM_INTERNAL_STATE_INFERENCE)

        interpreter = tf.lite.Interpreter(model_content=tflite_streaming_model)
        interpreter.allocate_tensors()

        stream_out = inference.run_stream_inference_classification_tflite(
            params, interpreter, input_data, input_states=None)

        self.assertAllClose(stream_out, non_stream_out, atol=1e-5)
Пример #9
0
 def test_model_to_tflite(self):
     """TFLite supports stateless graphs."""
     self.assertTrue(
         utils.model_to_tflite(self.sess, self.model, self.flags))
Пример #10
0
  def test_cnn_model_end_to_end(self):

    config = tf1.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf1.Session(config=config)
    tf1.keras.backend.set_session(sess)
    test_utils.set_seed(123)

    # data parameters
    num_time_bins = 12
    feature_size = 12

    # model params.
    total_stride = 2
    params = test_utils.Params([total_stride], 0)
    params.model_name = 'cnn'
    params.cnn_filters = '2'
    params.cnn_kernel_size = '(3,3)'
    params.cnn_act = "'relu'"
    params.cnn_dilation_rate = '(1,1)'
    params.cnn_strides = '(2,2)'
    params.dropout1 = 0.5
    params.units2 = ''
    params.act2 = ''

    params.label_count = 2
    params.return_softmax = True
    params.quantize = 1  # apply quantization aware training

    params.data_shape = (num_time_bins, feature_size)
    params.preprocess = 'custom'

    model = cnn.model(params)
    model.summary()

    # prepare training and testing data
    train_images, train_labels = test_utils.generate_data(
        img_size_y=num_time_bins, img_size_x=feature_size, n_samples=32)
    test_images = train_images
    test_labels = train_labels

    # create and train quantization aware model in non streaming mode
    model.compile(
        optimizer='adam',
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        metrics=['accuracy'])
    model.fit(
        train_images,
        train_labels,
        epochs=1,
        validation_data=(test_images, test_labels))
    model.summary()

    # one test image
    train_image = train_images[:1,]

    # run tf non streaming inference
    non_stream_output_tf = model.predict(train_image)

    # specify input data shape for streaming mode
    params.data_shape = (total_stride, feature_size)
    # TODO(rybakov) add params structure for model with no feature extractor

    # prepare tf streaming model and use it to generate representative_dataset
    with quantize.quantize_scope():
      stream_quantized_model = utils.to_streaming_inference(
          model, params, Modes.STREAM_EXTERNAL_STATE_INFERENCE)

    calibration_data = prepare_calibration_data(stream_quantized_model,
                                                total_stride, train_image)

    def representative_dataset(dtype):
      def _representative_dataset_gen():
        for i in range(len(calibration_data)):
          yield [
              calibration_data[i][0].astype(dtype),  # input audio packet
              calibration_data[i][1].astype(dtype),  # conv state
              calibration_data[i][2].astype(dtype)  # flatten state
          ]

      return _representative_dataset_gen

    # convert streaming quantization aware model to tflite
    # and apply post training quantization
    with quantize.quantize_scope():
      tflite_streaming_model = utils.model_to_tflite(
          sess, model, params,
          Modes.STREAM_EXTERNAL_STATE_INFERENCE,
          optimizations=[tf.lite.Optimize.DEFAULT],
          inference_type=tf.int8,
          experimental_new_quantizer=True,
          representative_dataset=representative_dataset(np.float32))

    # run tflite in streaming mode and compare output logits with tf
    interpreter = tf.lite.Interpreter(model_content=tflite_streaming_model)
    interpreter.allocate_tensors()
    input_states = []
    for detail in interpreter.get_input_details():
      input_states.append(np.zeros(detail['shape'], dtype=np.float32))
    stream_out_tflite = inference.run_stream_inference_classification_tflite(
        params, interpreter, train_image, input_states)
    self.assertAllClose(stream_out_tflite, non_stream_output_tf, atol=0.001)
Пример #11
0
  def test_streaming_on_1d_data_strides(self, stride):
    """Tests Conv2DTranspose on 1d in streaming mode with different strides.

    Args:
        stride: controls the upscaling factor
    """

    tf1.reset_default_graph()
    config = tf1.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf1.Session(config=config)
    tf1.keras.backend.set_session(sess)

    # model and data parameters
    step = 1  # amount of data fed into streaming model on every iteration
    params = test_utils.Params([step], clip_duration_ms=0.25)

    # prepare input data: [batch, time, 1, channels]
    x = np.random.rand(1, params.desired_samples, 1, self.input_channels)
    inp_audio = x

    # prepare non-streaming model
    model = conv2d_transpose_model(
        params,
        filters=1,
        kernel_size=(3, 1),
        strides=(stride, 1),
        channels=self.input_channels)
    model.summary()

    # set weights with bias
    for layer in model.layers:
      if isinstance(layer, tf.keras.layers.Conv2DTranspose):
        layer.set_weights([
            np.ones(layer.weights[0].shape),
            np.zeros(layer.weights[1].shape) + 0.5
        ])

    params.data_shape = (1, 1, self.input_channels)

    # prepare streaming model
    model_stream = utils.to_streaming_inference(
        model, params, modes.Modes.STREAM_INTERNAL_STATE_INFERENCE)
    model_stream.summary()

    # run inference
    non_stream_out = model.predict(inp_audio)
    stream_out = inference.run_stream_inference(params, model_stream, inp_audio)

    self.assertAllClose(stream_out, non_stream_out)

    # Convert TF non-streaming model to TFLite external-state streaming model.
    tflite_streaming_model = utils.model_to_tflite(
        sess, model, params, modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE)
    self.assertTrue(tflite_streaming_model)

    # Run TFLite external-state streaming inference.
    interpreter = tf.lite.Interpreter(model_content=tflite_streaming_model)
    interpreter.allocate_tensors()

    input_details = interpreter.get_input_details()

    input_states = []
    # before processing test sequence we create model state
    for s in range(len(input_details)):
      input_states.append(np.zeros(input_details[s]['shape'], dtype=np.float32))

    stream_out_tflite_external_st = inference.run_stream_inference_tflite(
        params, interpreter, inp_audio, input_states, concat=True)

    # compare streaming TFLite with external-state vs TF non-streaming
    self.assertAllClose(stream_out_tflite_external_st, non_stream_out)