Пример #1
0
def evaluate(sess, test_inputs, test_labels, model, report):
  """Evaluates model against normal test examples and adversarial
  training examples
  :param sess: tensorflow session
  :param test_inputs: placeholder for test inputs
  :param test_labels: placeholder for test labels
  :param model: cleverhans model
  :param report: cleverhans report
  :returns: tuple containing accuracy on clean testing examples
      and accuracy on adversarial example
  """
  with tf.variable_scope("clean_evaluation"):
    x_train, y_train, x_test, y_test = datasets.get_clever_mnist()
    # test on test datase
    test_logits = model.get_logits(test_inputs)
    clean_accuracy = adv_util.evaluate(sess, report, test_inputs, test_labels,
                                       test_logits, x_test, y_test,
                                       'clean_train_clean_eval',
                                       MODEL_CONSTANTS.EVAL_PARAMS, False)
    # adversarial testing on train dataset
    attack_type, params = ADV_CONSTANTS.get_attack_details(FLAGS.test_attack)
    attack = attack_type(model, sess=sess)

  with tf.variable_scope("adversarial_evaluation"):
    adv_x = attack.generate(test_inputs, **params)
    adv_logits = model.get_logits(adv_x)
    adv_accuracy = adv_util.evaluate(sess, report, test_inputs, test_labels,
                                     adv_logits, x_train, y_train,
                                     'clean_train_adv_eval',
                                     MODEL_CONSTANTS.EVAL_PARAMS, True)
  return clean_accuracy, adv_accuracy
Пример #2
0
def adv_training(sess, inputs, labels):
  """Train and evaluates a model on adversarial examples
  """
  adversarial_model = get_model(FLAGS.model_type, 'train_adv')
  fgsm2 = FastGradientMethod(adversarial_model, sess=sess)

  def attack(inputs):
    return fgsm2.generate(inputs, **ADV_CONSTANTS.get_attack_details(FLAGS.train_attack)[1])

  loss2 = CrossEntropy(
      adversarial_model, smoothing=FLAGS.label_smoothing, attack=attack)
  adv_x2 = attack(inputs)

  preds_2 = adversarial_model.get_logits(inputs)
  preds2_adv = adversarial_model.get_logits(adv_x2)

  def evaluate2():
    """Interface to cleverhans train
    """
    # Accuracy of adversarially trained model on legitimate test inputs
    utl.evaluate(sess, report, inputs, labels, preds_2, x_test, y_test,
                 'adv_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS, False)
    # Accuracy of the adversarially trained model on adversarial examples
    utl.evaluate(sess, report, inputs, labels, preds2_adv, x_test,
                 y_test, 'adv_train_adv_eval', MODEL_CONSTANTS.EVAL_PARAMS, True)

  # Perform and evaluate adversarial training
  train(sess, loss2, x_train, y_train, evaluate=evaluate2,
        args=MODEL_CONSTANTS.TRAIN_PARAMS, rng=rng, var_list=adversarial_model.get_params())

  # Calculate training errors
  utl.evaluate(sess, report,  inputs, labels, preds2_adv, x_train,
               y_train, 'train_adv_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS)
  utl.evaluate(sess, report, inputs, labels, preds2_adv, x_train,
               y_train, 'train_adv_train_adv_eval', MODEL_CONSTANTS.EVAL_PARAMS)
Пример #3
0
def train_clean(sess, inputs, labels):
  """Train without adversarial examples
  """
  def _evaluate():
    """Interface o evaluation method for
    cleverhans train
    """
    utl.evaluate(sess, report, inputs, labels, preds,
                 x_test, y_test,
                 'clean_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS, False)

  if FLAGS.clean_train:
    model = get_model(FLAGS.model_type, 'train_1')
    preds = model.get_logits(inputs)
    loss = CrossEntropy(model, smoothing=FLAGS.label_smoothing)

  train(sess, loss, x_train, y_train,
        evaluate=_evaluate,
        args=MODEL_CONSTANTS.TRAIN_PARAMS, rng=rng, var_list=model.get_params())

  # evaluate model on adversarial examples
  fgsm = FastGradientMethod(model, sess=sess)
  adv_x = fgsm.generate(
      inputs, **ADV_CONSTANTS.get_attack_details(FLAGS.train_attack)[1])
  preds_adv = model.get_logits(adv_x)

  utl.evaluate(sess, report, inputs, labels, preds_adv, x_test,
               y_test, 'clean_train_adv_eval', MODEL_CONSTANTS.EVAL_PARAMS, True)

  # calculate training error
  utl.evaluate(sess, report, inputs, labels, preds, x_train,
               y_train, 'train_clean_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS)
Пример #4
0
 def _evaluate():
   """Interface o evaluation method for
   cleverhans train
   """
   utl.evaluate(sess, report, inputs, labels, preds,
                x_test, y_test,
                'clean_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS, False)
Пример #5
0
 def evaluate2():
   """Interface to cleverhans train
   """
   # Accuracy of adversarially trained model on legitimate test inputs
   utl.evaluate(sess, report, inputs, labels, preds_2, x_test, y_test,
                'adv_train_clean_eval', MODEL_CONSTANTS.EVAL_PARAMS, False)
   # Accuracy of the adversarially trained model on adversarial examples
   utl.evaluate(sess, report, inputs, labels, preds2_adv, x_test,
                y_test, 'adv_train_adv_eval', MODEL_CONSTANTS.EVAL_PARAMS, True)