def build(self,
              input_shape=[None, 784],
              custom_variables=None,
              scope="optimizee_vars"):
        """Builds the computational graph for the optimziee
    :param input_shape: an array with the dimensions of the input
    :param custom_variables: an array with variables in the same
        order as the networks' variables - this array is used
        to build the network with these variables and disconnect
        the gradients in the graph.
    :returns: cleverhans model for this class
    """
        template = MODEL_CONSTANTS.get_fc_template()
        mlp_args = {
            'layers': template,
            'input_shape': input_shape,
            'scope': scope
        }
        if custom_variables is None:
            self.model = CustomModel(**mlp_args)
        else:
            self.model = util.make_with_custom_variables(
                CustomModel, mlp_args, custom_variables)

        return self.model
Пример #2
0
def inference_custom():
    x = tf.placeholder(dtype=tf.float32, shape=util.get_input_shape_none())
    variables = [tf.Variable(initial_value=0)]

    inf_op_custom = util.make_with_custom_variables(inference, [x], variables)

    return inf_op_custom
Пример #3
0
def clever_custom_vars():
  op = MLP
  kwargs = {'layers': layers, 'input_shape': input_shape}
  variables, _ = util.get_variables(op, kwargs)

  custom_model = util.make_with_custom_variables(op, kwargs, variables)
  return custom_model
Пример #4
0
def get_model_loss(x, y, custom_variables=None):
    if custom_variables is None:
        model = op(**opkwargs)
        logits = model.get_logits(x)
        loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,
                                                          logits=logits)
        return loss

    model = util.make_with_custom_variables(op, opkwargs, custom_variables)
    logits = model.get_logits(x)
    loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=logits)
    return loss
Пример #5
0
def loop_body(t, variables, x, y, fx_array):
  with tf.name_scope("loop_function"):
    model = util.make_with_custom_variables(op, opkwargs, variables)
    logits = model.get_logits(x)
    loss = tf.nn.softmax_cross_entropy_with_logits_v2(
        labels=y, logits=logits)
    fx_array = fx_array.write(t, loss)

  with tf.name_scope("time_step"):
    t_next = t+1

  next_variables = [x+0.01 for x in variables]
  return t_next, next_variables, x, y, fx_array