def test_compute_mse_error(tmp_path: Path) -> None:
    data = ChunkedStateDataset(path="./l5kit/tests/data/single_scene.zarr")
    data.open()
    export_zarr_to_ground_truth_csv(data, str(tmp_path / "gt1.csv"), 0, 12,
                                    0.5)
    export_zarr_to_ground_truth_csv(data, str(tmp_path / "gt2.csv"), 0, 12,
                                    0.5)
    err = compute_mse_error_csv(str(tmp_path / "gt1.csv"),
                                str(tmp_path / "gt2.csv"))
    assert err == 0.0

    data_fake = ChunkedStateDataset("")
    data_fake.scenes = np.asarray(data.scenes).copy()
    data_fake.frames = np.asarray(data.frames).copy()
    data_fake.agents = np.asarray(data.agents).copy()
    data_fake.root = data.root
    data_fake.agents["centroid"] += np.random.rand(
        *data_fake.agents["centroid"].shape)

    export_zarr_to_ground_truth_csv(data_fake, str(tmp_path / "gt3.csv"), 0,
                                    12, 0.5)
    err = compute_mse_error_csv(str(tmp_path / "gt1.csv"),
                                str(tmp_path / "gt3.csv"))
    assert err > 0.0

    # test invalid conf by removing lines in gt1
    with open(str(tmp_path / "gt4.csv"), "w") as fp:
        lines = open(str(tmp_path / "gt1.csv")).readlines()
        fp.writelines(lines[:-10])

    with pytest.raises(ValueError):
        compute_mse_error_csv(str(tmp_path / "gt1.csv"),
                              str(tmp_path / "gt4.csv"))
Пример #2
0
def dataset() -> ChunkedStateDataset:
    dataset = ChunkedStateDataset("")
    dataset.scenes = np.zeros(1, dtype=dataset.scenes.dtype)
    dataset.frames = np.zeros(SCENE_LENGTH, dtype=dataset.frames.dtype)
    dataset.agents = np.zeros(SCENE_LENGTH, dtype=dataset.agents.dtype)

    dataset.scenes[0]["frame_index_interval"] = (0, SCENE_LENGTH)
    for idx in range(len(dataset.frames)):
        dataset.frames[idx]["agent_index_interval"] = (idx, idx + 1)
        dataset.frames[idx]["timestamp"] = idx

    for idx in range(len(dataset.agents)):
        # we don't check moving anymore, so the agent can stay still
        dataset.agents[idx]["extent"] = (5, 5, 5)
        dataset.agents[idx]["yaw"] = 0
        dataset.agents[idx]["track_id"] = 1
        dataset.agents[idx]["label_probabilities"][3] = 1.0

    return dataset