Пример #1
0
def loop():
    logger.info(a=2, b=1)

    logger.add_indicator(Queue("reward", 10, True))
    for i in range(100):
        logger.write(i, loss=100 / (i + 1), reward=math.pow(2, (i + 1)))
        if (i + 1) % 2 == 0:
            logger.write(valid=i**10)
            logger.new_line()

        time.sleep(0.3)
Пример #2
0
def loop():
    logger.info(a=2, b=1)

    logger.add_indicator('loss_ma', IndicatorType.queue,
                         IndicatorOptions(queue_size=10))
    for i in range(10):
        logger.add_global_step(1)
        logger.store(loss=100 / (i + 1), loss_ma=100 / (i + 1))
        logger.write()
        if (i + 1) % 2 == 0:
            logger.new_line()

        time.sleep(2)
Пример #3
0
    def __call__(self):
        # Training and testing
        logger_util.add_model_indicators(self.model)

        logger.add_indicator(Queue("train_loss", 20, True))
        logger.add_indicator(Histogram("test_loss", True))
        logger.add_indicator(Histogram("accuracy", True))
        logger.add_indicator(IndexedScalar('test_sample_loss'))
        logger.add_indicator(IndexedScalar('test_sample_pred'))

        test_data = np.array([d[0].numpy() for d in self.test_loader.dataset])
        logger.save_numpy("test_data", test_data)

        for _ in self.loop:
            self._train()
            self._test()
            self.__log_model_params()
Пример #4
0
    def startup(self):
        logger_util.add_model_indicators(self.model)

        logger.add_indicator("train_loss", IndicatorType.queue,
                             IndicatorOptions(queue_size=20, is_print=True))
        logger.add_indicator("test_loss", IndicatorType.histogram,
                             IndicatorOptions(is_print=True))
        logger.add_indicator("accuracy", IndicatorType.histogram,
                             IndicatorOptions(is_print=True))
Пример #5
0
    def __call__(self):
        logger_util.add_model_indicators(self.model)

        logger.add_indicator(Queue("train_loss", 20, True))
        logger.add_indicator(Histogram("test_loss", True))
        logger.add_indicator(Histogram("accuracy", True))

        for _ in self.loop:
            self._train()
            self._test()
            self.__log_model_params()
Пример #6
0
    def __call__(self):
        # Training and testing
        logger_util.add_model_indicators(self.model)

        logger.add_indicator("train_loss", IndicatorType.queue,
                             IndicatorOptions(queue_size=20, is_print=True))
        logger.add_indicator("test_loss", IndicatorType.histogram,
                             IndicatorOptions(is_print=True))
        logger.add_indicator("accuracy", IndicatorType.histogram,
                             IndicatorOptions(is_print=True))

        for _ in self.loop:
            self._train()
            self._test()
            self.__log_model_params()
Пример #7
0
def main():
    args = parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    # Loading data
    with logger.section("Loading data"):
        train_loader = torch.utils.data.DataLoader(datasets.MNIST(
            './data',
            train=True,
            download=True,
            transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))
            ])),
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   **kwargs)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('./data',
                           train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307, ), (0.3081, ))
                           ])),
            batch_size=args.test_batch_size,
            shuffle=True,
            **kwargs)

    # Model creation
    with logger.section("Create model"):
        model = Net().to(device)
        optimizer = optim.SGD(model.parameters(),
                              lr=args.lr,
                              momentum=args.momentum)

    # Specify indicators
    logger.add_indicator("train_loss", queue_limit=10, is_print=True)
    logger.add_indicator("test_loss", is_histogram=False, is_print=True)
    logger.add_indicator("accuracy", is_histogram=False, is_print=True)
    for name, param in model.named_parameters():
        if param.requires_grad:
            logger.add_indicator(name, is_histogram=True, is_print=False)
            logger.add_indicator(f"{name}_grad",
                                 is_histogram=True,
                                 is_print=False)

    # Start the experiment
    EXPERIMENT.start_train()

    # Loop through the monitored iterator
    for epoch in logger.loop(range(0, args.epochs)):
        # Delayed keyboard interrupt handling to use
        # keyboard interrupts to end the loop.
        # This will capture interrupts and finish
        # the loop at the end of processing the iteration;
        # i.e. the loop won't stop in the middle of an epoch.
        try:
            with logger.delayed_keyboard_interrupt():

                # Training and testing
                train(args, model, device, train_loader, optimizer, epoch)
                test(model, device, test_loader)

                # Add histograms with model parameter values and gradients
                for name, param in model.named_parameters():
                    if param.requires_grad:
                        logger.store(name, param.data.cpu().numpy())
                        logger.store(f"{name}_grad", param.grad.cpu().numpy())

                # Clear line and output to console
                logger.write()

                # Output the progress summaries to `trial.yaml` and
                # to the python file header
                logger.save_progress()

                # Clear line and go to the next line;
                # that is, we add a new line to the output
                # at the end of each epoch
                logger.new_line()

        # Handled delayed interrupt
        except KeyboardInterrupt:
            logger.finish_loop()
            logger.new_line()
            logger.log("\nKilling loop...")
            break
Пример #8
0
def add_model_indicators(model: torch.nn.Module, model_name: str = "model"):
    for name, param in model.named_parameters():
        if param.requires_grad:
            logger.add_indicator(Histogram(f"{model_name}.{name}"))
            logger.add_indicator(Histogram(f"{model_name}.{name}.grad"))
Пример #9
0
    def startup(self):
        logger_util.add_model_indicators(self.model)

        logger.add_indicator(Queue("train_loss", 20, True))
        logger.add_indicator(Histogram("test_loss", True))
        logger.add_indicator(Histogram("accuracy", True))
Пример #10
0
with logger.section("Create model"):
    # Indicate that this section failed. You don't have to set
    #  this if it is successful.
    logger.set_successful(False)

    # Sleep for a minute.
    time.sleep(1)

# Print sample info
logger.info(one=1, two=2, string="string")

# ### Set logger indicators

# Reward is queued; this is useful when you want to track the moving
# average of something.
logger.add_indicator("reward", queue_limit=10)

# By default everything is a set of values and will create a TensorBoard histogram
# We specify that `fps` is a scalar.
# If you store multiple values for this it will output the mean.
logger.add_indicator("fps", is_histogram=False, is_print=False)

# This will produce a histogram
logger.add_indicator("loss", is_print=False)

# A heat map
logger.add_indicator("advantage_reward",
                     is_histogram=False,
                     is_print=False,
                     is_pair=True)
Пример #11
0
def main():
    args = parse_args()

    # Loading data
    with logger.section("Load data"):
        mnist = tf.keras.datasets.mnist

        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        x_train, x_test = x_train / 255.0, x_test / 255.0

        train_dataset = create_mnist_dataset(x_train, y_train, args.batch_size)
        test_dataset = create_mnist_dataset(x_test, y_test, args.batch_size)

    # Model creation
    with logger.section("Create model"):
        model = tf.keras.models.Sequential([
            tf.keras.layers.Flatten(input_shape=(28, 28)),
            tf.keras.layers.Dense(512, activation=tf.nn.relu),
            tf.keras.layers.Dropout(0.2),
            tf.keras.layers.Dense(10, activation=tf.nn.softmax)
        ])

    # Creation of the trainer
    with logger.section("Create trainer"):
        optimizer = tf.train.AdamOptimizer(learning_rate=args.lr)
        train_iterator = train_dataset.make_initializable_iterator()
        data, target = train_iterator.get_next()
        train_loss = loss(model, data, target)
        train_op = optimizer.minimize(train_loss)

        test_iterator = test_dataset.make_initializable_iterator()
        data, target = test_iterator.get_next()
        test_loss = loss(model, data, target)
        test_accuracy = accuracy(model, data, target)

    logger.add_indicator("train_loss", queue_limit=10, is_print=True)
    logger.add_indicator("test_loss", is_histogram=False, is_print=True)
    logger.add_indicator("accuracy", is_histogram=False, is_print=True)

    #
    batches = len(x_train) // args.batch_size

    with tf.Session() as session:
        EXPERIMENT.start_train(session)

        # Loop through the monitored iterator
        for epoch in logger.loop(range(0, args.epochs)):
            # Delayed keyboard interrupt handling to use
            # keyboard interrupts to end the loop.
            # This will capture interrupts and finish
            # the loop at the end of processing the iteration;
            # i.e. the loop won't stop in the middle of an epoch.
            try:
                with logger.delayed_keyboard_interrupt():

                    # Training and testing
                    session.run(train_iterator.initializer)
                    train(args, session, train_loss, train_op, batches, epoch)
                    session.run(test_iterator.initializer)
                    test(session, test_loss, test_accuracy,
                         len(x_test) // args.batch_size)

                    # Clear line and output to console
                    logger.write()

                    # Output the progress summaries to `trial.yaml` and
                    # to the python file header
                    logger.save_progress()

                    # Clear line and go to the next line;
                    # that is, we add a new line to the output
                    # at the end of each epoch
                    logger.new_line()

            # Handled delayed interrupt
            except KeyboardInterrupt:
                logger.finish_loop()
                logger.new_line()
                logger.log("\nKilling loop...")
                break