def test_db_get(): dbName = "/tmp/test2.dbdb" if os.path.exists(dbName): os.remove(dbName) db = lab10.connect(dbName) db.set("rahul", "aged") db.set("pavlos", "aged") db.set("kobe", "stillyoung") db.commit() db.close() db = lab10.connect("/tmp/test2.dbdb") assert db.get("rahul") == "aged" db.commit() db.close()
def test_db_get_error(): dbName = "/tmp/test2.dbdb" if os.path.exists(dbName): os.remove(dbName) db = lab10.connect(dbName) db.set(4.4, "ts484.dat") with raises(KeyError): db.get(3.9) db.commit() db.close()
def test_db_get_All_LTE(): dbName = "/tmp/test2.dbdb" if os.path.exists(dbName): os.remove(dbName) db = lab10.connect(dbName) db.set(4.4, "ts484.dat") db.set(0.0, "ts3.dat") #vantagePT db.set(1.3, "ts82.dat") db.set(2.9, "ts84.dat") db.set(2.3, "ts382.dat") db.set(2.1, "ts52.dat") db.set(1.8, "ts49.dat") db.set(1.1, "ts77.dat") db.set(5.3, "ts583.dat") keys, vals = db.get_All_LTE(2.9) assert keys == [0.0, 1.3, 2.9, 2.3, 2.1, 1.8, 1.1] db.commit() db.close()
''' if __name__ == "__main__": # Load in the TS to Evaluate filename = sys.argv[1] x = np.loadtxt(filename, delimiter=' ') origTs = ts.TimeSeries(x[:,1],x[:,0]) time = np.arange(0.0, 1.0, 0.01) testTs = origTs.interpolate(time) # Find the Nearest vantagePt minDist = float('inf') for j in range(20): dbName = "tsdb/db"+str(j)+".dbdb" db = lab10.connect(dbName) vantagePtFile = db.get(0) x = np.loadtxt(vantagePtFile, delimiter=' ') comparePt = ts.TimeSeries(x[:,1],x[:,0]) dist = 2*(1-ss.kernel_corr(comparePt,testTs)) if dist < minDist: minDist = dist minDbName = dbName minVantagePtFile = vantagePtFile #Connect to DB Referencing the Nearest vantagePT db = lab10.connect(minDbName) keys, filenames = db.get_All_LTE(float(2)*minDist) nFiles = len(filenames) #Dictionary Key File, Val = Distance to testTs
dbList = [] #Create TS Referencing #The 20 randomally selected vantagePtFiles for j in range(20): fileName = 'tsdata/ts' + str(indexes[j]) + '.dat' dbName = "tsdb/db" + str(j) + ".dbdb" x = np.loadtxt(fileName, delimiter=' ') vantagePt = ts.TimeSeries(x[:, 1], x[:, 0]) vantagePtList.append(vantagePt) ##Remove DB if it has previously been created if os.path.exists(dbName): os.remove(dbName) # Connect to Databses db = lab10.connect(dbName) dbList.append(db) #For all 20 Databases #Loop through 1000 TimeSeries #Add Key = Distance(vantagePt, comparePt) #Value = comparePT's fileName for i in range(1000): fileName = 'tsdata/ts' + str(i) + '.dat' x = np.loadtxt(fileName, delimiter=' ') comparePt = ts.TimeSeries(x[:, 1], x[:, 0]) # Add Key,Value for ComparePt for all 20 Databases for j in range(20): dist = 2 * (1 - ss.kernel_corr(vantagePtList[j], comparePt)) dbList[j].set(dist, fileName)