def testLabelWav(self):
     tmp_dir = self.get_temp_dir()
     wav_data = self._getWavData()
     wav_filename = os.path.join(tmp_dir, "wav_file.wav")
     self._saveTestWavFile(wav_filename, wav_data)
     input_name = "test_input"
     output_name = "test_output"
     graph_filename = os.path.join(tmp_dir, "test_graph.pb")
     with tf.Session() as sess:
         tf.placeholder(tf.string, name=input_name)
         tf.zeros([1, 3], name=output_name)
         with open(graph_filename, "wb") as f:
             f.write(sess.graph.as_graph_def().SerializeToString())
     labels_filename = os.path.join(tmp_dir, "test_labels.txt")
     with open(labels_filename, "w") as f:
         f.write("a\nb\nc\n")
     label_wav.label_wav(wav_filename, labels_filename, graph_filename,
                         input_name + ":0", output_name + ":0", 3)
Пример #2
0
 def get_result(self, filename):
     # graph_name = './866_895.pb'
     # labels_name = './conv_labels.txt'
     wav = filename
     input_name = 'wav_data:0'
     output_name = 'labels_softmax:0'
     how_many_labels = 1
     result_dict = label_wav.label_wav(wav, self.labels, self.graph,
                                       input_name, output_name,
                                       how_many_labels)
     return result_dict
Пример #3
0
def infer(wav):  
    ## wav should be a name in string form that is under recorder 
    ## 将需要识别结果的 wav 文件放到 recorder 里面
    ## 要求 必须是 无压缩 16000Hz 的单英文单词的 1s音频
    ## e.g. wav = '0b40aa8e_nohash_0.wav'  
    labels = nlp_path + '/speech_commands_train/conv_labels.txt'   #xxx改变label生成位置
    graph = nlp_path + '/graph/my_frozen_graph.pb'   #freeze里面改变graph生成位置
    input_name = 'wav_data:0'
    output_name = 'labels_softmax:0'
    how_many_labels = 1
    
    wav = nlp_path + "/recorder/" + wav
    
    return label_wav.label_wav(wav, labels, graph, input_name, output_name, how_many_labels)
Пример #4
0
def recog(request):
    sound = AudioSegment.from_wav("documents/theRecog.wav")
    sound = sound.set_frame_rate(16000)
    sound.export("documents/theNewRecog.wav", format="wav")
    result = label_wav(
        wav='documents/theNewRecog.wav',
        graph='my_frozen_graph.pb',
        labels='conv_labels.txt',
        input_name='wav_data:0',
        output_name='labels_softmax:0',
        how_many_labels=3,
    )

    notResult = ",".join(result)
    strResult = "\"" + notResult + "\""
    print(strResult)
    return render(request, 'recorder.html', {'recogResult': strResult})
Пример #5
0
def recog(request):

    sound = AudioSegment.from_wav("documents/the_" + ctx['rlt'] + "_Recog.wav")
    sound = sound.set_frame_rate(16000)
    sound.export("documents/the_" + ctx['rlt'] + "_NewRecog.wav", format="wav")
    result = label_wav(
        wav='documents/the_' + ctx['rlt'] + '_NewRecog.wav',
        graph='my_frozen_graph.pb',
        labels='conv_labels.txt',
        input_name='wav_data:0',
        output_name='labels_softmax:0',
        how_many_labels=3,
    )

    notResult = ",".join(result)
    strResult = "\"" + notResult + "\""
    print(strResult)
    return HttpResponse(strResult)
Пример #6
0
    def post(self):

        audio_webm = request.files['blob']
        audio_webm.save(os.path.join(app.config['UPLOAD_FOLDER'], str(timestamp)+".webm"))

        try:
            if(get_chunk(str(timestamp)+".webm")=="silence"):
                raise FileExistsError
            else:
                top = label_wav("uploads/chunk0.wav", "sp_train/conv_labels.txt", "model/my_frozen_graph.pb", "wav_data:0", "labels_softmax:0", 4)
                print(top)
                return make_response(jsonify(
                    top
                ), 200)
        except FileExistsError:
            return make_response(jsonify(
                "silence"
            ), 200)
Пример #7
0
def listen_label(graph, labels, wav_file_path):
    #listen for 3s
    RECORDING = True
    while (RECORDING):
        inp = input("standby: ")
        if inp == 'r':
            print("\n*listening")
            frames = []
            #open stream
            stream = p.open(format=FORMAT,
                            channels=CHANNELS,
                            rate=RATE,
                            input=True,
                            frames_per_buffer=CHUNK)
            for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
                data = stream.read(CHUNK)
                frames.append(data)
            print("the chord is: ")
            stream.stop_stream()
            stream.close()
            #write out file
            WAVE_OUTPUT_FILENAME = "temp.wav"
            wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
            wf.setnchannels(CHANNELS)
            wf.setsampwidth(p.get_sample_size(FORMAT))
            wf.setframerate(RATE)
            wf.writeframes(b''.join(frames))
            wf.close()

            chord = lw.label_wav(wav_file_path, labels, graph, 'wav_data:0',
                                 'labels_softmax:0', 1)

            return chord

        elif inp == 'q':
            print("\n*exiting")
            RECORDING = False
            p.terminate()
Пример #8
0
def check_new_files():
    while True:
        next_wav_id = r.lpop('wav_id')
        if not next_wav_id:
            return
        next_file = f'/data/{next_wav_id}.wav'
        logger.info(f'processing {next_file}')
        result, error = None, None
        try:
            result = label_wav.label_wav(next_file)
            logger.info('result from label_wav: ' + str(result))
        except Exception as e:
            error = e
            logger.info('error from label_wav: ' + str(error))
            continue
        for k, v in result.items():
            label = k
            label_prob = v
        if label_prob > LABEL_PROB_THRESHOLD:
            notifications.push_police_notification({
                'wav_id': next_wav_id,
                'label': label,
                'label_prob': str(label_prob),
            })
Пример #9
0
def listen(graph, labels, wav_file_path):
    frames = []
    stream = p.open(format=FORMAT,
                    channels=CHANNELS,
                    rate=RATE,
                    input=True,
                    frames_per_buffer=CHUNK)
    for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
        data = stream.read(CHUNK)
        frames.append(data)

    stream.stop_stream()
    stream.close()

    WAVE_OUTPUT_FILENAME = "temp.wav"
    wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
    wf.setnchannels(CHANNELS)
    wf.setsampwidth(p.get_sample_size(FORMAT))
    wf.setframerate(RATE)
    wf.writeframes(b''.join(frames))
    wf.close()
    chord = lw.label_wav(wav_file_path, labels, graph, 'wav_data:0',
                         'labels_softmax:0', 1)
    return str(chord)