Пример #1
0
def _check_image_height_and_width(imageData, imageHeight, imageWidth):
    img_arr = utils.img_b64_to_arr(imageData)
    if imageHeight is not None and img_arr.shape[0] != imageHeight:
        imageHeight = img_arr.shape[0]
    if imageWidth is not None and img_arr.shape[1] != imageWidth:
        imageWidth = img_arr.shape[1]
    return imageHeight, imageWidth
Пример #2
0
    def Json_to_dataset(self):
        count = os.listdir(self.JsonjpgChange)
        for i in range(0, len(count)):
            path = os.path.join(self.Jsonjpg7, count[i])

            if os.path.isfile(path) and path.endswith('json'):
                data = json.load(open(path))

                if data['imageData']:
                    imageData = data['imageData']
                else:
                    imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                    with open(imagePath, 'rb') as f:
                        imageData = f.read()
                        imageData = base64.b64encode(imageData).decode('utf-8')
                img = utils.img_b64_to_arr(imageData)
                label_name_to_value = {'_background_': 0}
                for shape in data['shapes']:
                    label_name = shape['label']
                    if label_name in label_name_to_value:
                        label_value = label_name_to_value[label_name]
                    else:
                        label_value = len(label_name_to_value)
                        label_name_to_value[label_name] = label_value

                # label_values must be dense
                label_values, label_names = [], []
                for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                    label_values.append(lv)
                    label_names.append(ln)
                assert label_values == list(range(len(label_values)))

                lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

                captions = ['{}: {}'.format(lv, ln)
                            for ln, lv in label_name_to_value.items()]
                lbl_viz = draw.draw_label(lbl, img, captions)
                out_dir = osp.basename(count[i]).replace('.', '_')
                out_dir = osp.join(osp.dirname(count[i]), out_dir)
                out_dir = osp.join(self.outputChange, out_dir)

                if not osp.exists(out_dir):
                    os.mkdir(out_dir)

                PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))

                utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
                PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

                with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
                    for lbl_name in label_names:
                        f.write(lbl_name + '\n')

                warnings.warn('info.yaml is being replaced by label_names.txt')
                info = dict(label_names=label_names)
                with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
                    yaml.safe_dump(info, f, default_flow_style=False)

                print('Saved to: %s' % out_dir)
        self.lineEdit_do_jsontodataset.setText('Json To Dataset Complete!')
Пример #3
0
def main():
    logger.warning('This script is aimed to demonstrate how to convert the'
                   'JSON file to a single image dataset, and not to handle'
                   'multiple JSON files to generate a real-use dataset.')

    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()

    json_file = args.json_file

    if args.out is None:
        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)

    PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
    utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
        for lbl_name in label_names:
            f.write(lbl_name + '\n')

    logger.warning('info.yaml is being replaced by label_names.txt')
    info = dict(label_names=label_names)
    with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        yaml.safe_dump(info, f, default_flow_style=False)

    logger.info('Saved to: {}'.format(out_dir))
Пример #4
0
def extract_heatmaps_info(json_data, label_name_to_value=LABEL_NAME_TO_VALUE):
    """
    Given labelme json data, construct a heatmaps info

    :param json_data: dict, labelme data from a json file
    :param label_name_to_value: dict
    :return: dict, heatmaps info
    """
    img = img_b64_to_arr(json_data['imageData'])
    info = {
        'img_height': img.shape[0],
        'img_width': img.shape[1],
        'cwh_list': [],
    }
    for shape in json_data['shapes']:
        lbl = shape['label']
        if lbl in label_name_to_value:
            points = shape['points']
            if len(points) > 3:
                c_x, c_y, w, h = points_to_cwh(points)
                info['cwh_list'].append({
                    'label': lbl,
                    'center': (c_x, c_y),
                    'width': w,
                    'height': h,
                })
    return info
Пример #5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    args = parser.parse_args()

    json_file = args.json_file

    data = json.load(open(json_file))  # 加载json文件

    img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据

    dense(img, data['shapes'])

    #src=cv2.imread('json/bird.jpg')

    #cv2.imshow('input_image',img)

    #lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) # 解析'shapes'中的字段信息,解析出每个对象的mask与对应的label   lbl存储 mask,lbl_names 存储对应的label
    # lal 像素取值 0、1、2 其中0对应背景,1对应第一个对象,2对应第二个对象
    # 使用该方法取出每个对象的mask mask=[] mask.append((lbl==1).astype(np.uint8)) # 解析出像素值为1的对象,对应第一个对象 mask 为0、1组成的(0为背景,1为对象)
    # lbl_names  ['background','cat_1','cat_2']

    #captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
    #lbl_viz = utils.draw_label(lbl, img, captions)
    a = 1
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Пример #6
0
    def get_raw_data(self, key, save_processed_image=False):
        """
        Args:
            key (int): key

        Returns:
            ret_dict
        """
        assert isinstance(key, int)
        json_file = self.json_path_list[key]

        data = json.load(open(json_file))
        imageData = data["imageData"]
        raw_img = utils.img_b64_to_arr(imageData)  # img: H x W x C
        seg_mask, _ = utils.shapes_to_label(raw_img.shape, data["shapes"],
                                            self.label_name_to_value)  # HxW
        seg_mask = torch.tensor(seg_mask, dtype=torch.uint8)
        seg_mask = self.label_unifier(seg_mask)
        loss_mask = torch.ones_like(seg_mask)
        raw_img = Image.fromarray(raw_img)
        return {
            'image': raw_img,
            'seg_mask': seg_mask,
            'loss_mask': loss_mask,
            'valid_label_idx': self.valid_label_idx,
        }
Пример #7
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()
    json_file = args.json_file
    list = os.listdir(json_file)
    for i in range(0, len(list)):
        path = os.path.join(json_file, list[i])
        if os.path.isfile(path):
            data = json.load(open(path))
            img = utils.img_b64_to_arr(data['imageData'])
            lbl, lbl_names = utils.labelme_shapes_to_label(
                img.shape, data['shapes'])
            captions = [
                '%d: %s' % (l, name) for l, name in enumerate(lbl_names)
            ]
            lbl_viz = utils.draw_label(lbl, img, captions)
            out_dir = osp.basename(list[i]).replace('.', '_')
            out_dir = osp.join(osp.dirname(list[i]), out_dir)
            if not osp.exists(out_dir):
                os.mkdir(out_dir)
            PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
            utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
            PIL.Image.fromarray(lbl_viz).save(
                osp.join(out_dir, 'label_viz.png'))
            with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
                for lbl_name in lbl_names:
                    f.write(lbl_name + '\n')
            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=lbl_names)
            with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)
            print('Saved to: %s' % out_dir)
Пример #8
0
def save_label_from_json(json_file, out_dir):
    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = osp.join(osp.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)

    utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
        for lbl_name in label_names:
            f.write(lbl_name + '\n')
Пример #9
0
def singleFile(filePath):
    if os.path.isfile(filePath) and filePath.endswith('.json'):
        data = json.load(open(filePath))
        img = lUtils.img_b64_to_arr(data['imageData'])
        lbl, lbl_names = lUtils.labelme_shapes_to_label(
            img.shape, data['shapes'])
        # lbl[lbl>0] = 255
        # print(lbl)

        captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
        lbl_viz = lUtils.draw_label(lbl, img, captions)
        out_dir = osp.basename(filePath).replace('.', '_')
        out_dir = osp.join(osp.dirname(filePath), out_dir)
        if not osp.exists(out_dir):
            os.mkdir(out_dir)
        PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
        PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
        print(np.max(lbl))
        lbl = np.array(lbl, dtype=np.uint8)
        lbl[lbl > 0] = 255

        PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label_255.png'))
        PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
        with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
            for lbl_name in lbl_names:
                f.write(lbl_name + '\n')
        warnings.warn('info.yaml is being replaced by label_names.txt')
        info = dict(label_names=lbl_names)
        with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
            yaml.safe_dump(info, f, default_flow_style=False)
        print('Saved to: %s' % out_dir)
Пример #10
0
def main():
    logger.warning("This script is aimed to demonstrate how to convert the "
                   "JSON file to a single image dataset.")
    logger.warning("It won't handle multiple JSON files to generate a "
                   "real-use dataset.")

    parser = argparse.ArgumentParser()
    parser.add_argument("json_file")
    parser.add_argument("-o", "--out", default=None)
    args = parser.parse_args()

    json_file = args.json_file

    if args.out is None:
        out_dir = osp.basename(json_file).replace(".", "_")
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    data = json.load(open(json_file))
    imageData = data.get("imageData")

    if not imageData:
        imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
        with open(imagePath, "rb") as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode("utf-8")
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {"_background_": 0}
    for shape in sorted(data["shapes"], key=lambda x: x["label"]):
        label_name = shape["label"]
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl, _ = utils.shapes_to_label(img.shape, data["shapes"],
                                   label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name

    lbl_viz = imgviz.label2rgb(label=lbl,
                               img=imgviz.asgray(img),
                               label_names=label_names,
                               loc="rb")

    PIL.Image.fromarray(img).save(osp.join(out_dir, "img.png"))
    utils.lblsave(osp.join(out_dir, "label.png"), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))

    with open(osp.join(out_dir, "label_names.txt"), "w") as f:
        for lbl_name in label_names:
            f.write(lbl_name + "\n")

    logger.info("Saved to: {}".format(out_dir))
Пример #11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    args = parser.parse_args()

    json_file = args.json_file

    data = json.load(open(json_file))  # 加载json文件

    img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
    lbl, lbl_names = utils.labelme_shapes_to_label(
        img.shape, data['shapes']
    )  # 解析'shapes'中的字段信息,解析出每个对象的mask与对应的label   lbl存储 mask,lbl_names 存储对应的label
    # lal 像素取值 0、1、2 其中0对应背景,1对应第一个对象,2对应第二个对象
    # 使用该方法取出每个对象的mask mask=[] mask.append((lbl==1).astype(np.uint8)) # 解析出像素值为1的对象,对应第一个对象 mask 为0、1组成的(0为背景,1为对象)
    # lbl_names  ['background','cat_1','cat_2']

    captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
    lbl_viz = utils.draw_label(lbl, img, captions)

    #画左边图
    plt.subplot(121)
    plt.imshow(img)
    #画右边的对比图
    plt.subplot(122)
    plt.imshow(lbl_viz)
    plt.show()
Пример #12
0
def json2dataset(json_dirpath):
    json_file = json_dirpath
    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)
    return lbl
Пример #13
0
def main():
    '''
    batch convert json to signle channel labels 
    src_path: the file path for json file
    target_path: the file path for labels out
    format:
        python batch_json_to_dataset.py [src_path] [target_path]
    '''

    parser = argparse.ArgumentParser()
    parser.add_argument('src_path')
    parser.add_argument('target_path')
    args = parser.parse_args()

    src_path = args.src_path
    target_path = args.target_path
    pattern = '*.json'

    for jpath in gb.glob(src_path + "/" + pattern):
        json_name = jpath.split('/')[-1].split('.')[0]
        data = json.load(open(jpath))
        img = utils.img_b64_to_arr(data['imageData'])
        lbl, lbl_names = our_labelme_shapes_to_label(img.shape, data['shapes'])
        print(json_name.split('\\')[1])
        print(osp.join(target_path, json_name + '.png'))
        PIL.Image.fromarray(lbl).save(
            osp.join(target_path,
                     json_name.split('\\')[1] + '.png'))

    print('done...')
Пример #14
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    args = parser.parse_args()

    json_file = args.json_file

    data = json.load(open(json_file))

    img = utils.img_b64_to_arr(data['imageData'])

    label_name_to_value = {'_background_': 0}
    for shape in data['shapes']:
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value

    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    captions = [
        '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()
    ]
    lbl_viz = utils.draw_label(lbl, img, captions)

    plt.subplot(121)
    plt.imshow(img)
    plt.subplot(122)
    plt.imshow(lbl_viz)
    plt.show()
Пример #15
0
def main():
    logger.warning('This script is aimed to demonstrate how to convert the'
                   'JSON file to a single image dataset, and not to handle'
                   'multiple JSON files to generate a real-use dataset.')

    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()

    json_file = args.json_file

    if args.out is None:
        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)

    PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
    utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
        for lbl_name in label_names:
            f.write(lbl_name + '\n')

    logger.warning('info.yaml is being replaced by label_names.txt')
    info = dict(label_names=label_names)
    with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        yaml.safe_dump(info, f, default_flow_style=False)

    logger.info('Saved to: {}'.format(out_dir))
Пример #16
0
def main():
    print('This script is aimed to demonstrate how to convert the'
          'JSON file to a single image dataset, and not to handle'
          'multiple JSON files to generate a real-use dataset.')

    path_file_name = glob.glob('*.json')
    file_num = len(path_file_name)
    print('INFO:There are ' + str(file_num) + ' json files')
    file_name = [i for i in range(file_num)]
    for i in range(file_num):
        file_name[i] = path_file_name[i].split('\\')[-1]
        print('INFO:' + file_name[i] + ' is dealt')
        data = json.load(open(path_file_name[i]))
        imageData = data.get('imageData')

        out_dir = osp.basename(path_file_name[i]).replace('.', '_')
        out_dir = osp.join(osp.dirname(path_file_name[i]), out_dir)
        if not os.path.exists(out_dir):
            os.mkdir(out_dir)

        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file),
                                     data['imagePath'])
            with open(imagePath, 'rb') as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode('utf-8')
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {'_background_': 0}
        for shape in sorted(data['shapes'], key=lambda x: x['label']):
            label_name = shape['label']
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl, _ = utils.shapes_to_label(img.shape, data['shapes'],
                                       label_name_to_value)

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name

        lbl_viz = imgviz.label2rgb(label=lbl,
                                   img=imgviz.asgray(img),
                                   label_names=label_names,
                                   loc='rb')

        PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
        utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
        PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

        with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
            for lbl_name in label_names:
                f.write(lbl_name + '\n')

        print('INFO:Saved to: {}'.format('images/segmentation/test/' +
                                         file_name[i]))

    print('INFO:finished!')
Пример #17
0
def load_json(path):
    '''for labelme 
    '''
    def flat(lists):
        result = []
        for listx in lists:
            result += listx
        return result

    with open(path, 'rb') as f:
        data = json.load(f)

    img = utils.img_b64_to_arr(data['imageData'])
    # mask, labels = utils.labelme_shapes_to_label(img.shape, data['shapes'])
    # print(mask.shape, labels)
    # masks = [(mask == i).astype(np.uint8) for i in range(len(labels))]
    # result = utils.draw_label(mask, img, labels, colormap=None)
    # Image.fromarray(result).show()

    blob = {
        'imagePath': data['imagePath'],
        'imageData': Image.fromarray(img),
        'labels': [],
        'points': []
    }

    for info in data['shapes']:
        blob['labels'] += [info['label']]
        blob['points'] += [flat(info['points'])]

    assert len(blob['labels']) == len(blob['points']), ''

    return blob
 def _image(self, obj, path):
     image = {}
     img_x = utils.img_b64_to_arr(obj['imageData'])
     image["height"] = img_x.shape[0]
     image["width"] = img_x.shape[1]
     image['id'] = self.img_id
     image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
     return image
Пример #19
0
 def json_generation(self):
     # image_names = [str(self.id)+'_flip_x', str(self.id)+'_flip_y', str(self.id)+'_flip_x_y']
     image_names = [str(self.id) + '_flip_x_y']
     if self.gaussianBlur:
         image_names.append(str(self.id) + '_Gaussian')
         # image_names.append(str(self.id)+'_flip_x'+'_Gaussian')
         # image_names.append(str(self.id)+'_flip_y' + '_Gaussian')
         image_names.append(str(self.id) + '_flip_x_y' + '_Gaussian')
     if self.changeExposure:
         image_names.append(str(self.id) + '_ReduceEp')
         # image_names.append(str(self.id)+'_flip_x'+'_ReduceEp')
         # image_names.append(str(self.id)+'_flip_y'+'_ReduceEp')
         image_names.append(str(self.id) + '_flip_x_y' + '_ReduceEp')
         image_names.append(str(self.id) + '_IncreaseEp')
         # image_names.append(str(self.id)+'_flip_x'+'_IncreaseEp')
         # image_names.append(str(self.id)+'_flip_y'+'_IncreaseEp')
         image_names.append(str(self.id) + '_flip_x_y' + '_IncreaseEp')
     if self.add_saltNoise:
         image_names.append(str(self.id) + '_Salt')
         # image_names.append(str(self.id)+'_flip_x' + '_Salt')
         # image_names.append(str(self.id)+'_flip_y' + '_Salt')
         image_names.append(str(self.id) + '_flip_x_y' + '_Salt')
     for image_name in image_names:
         with open(image_name + ".jpg", "rb") as b64:
             base64_data_original = str(base64.b64encode(b64.read()))
             # In pycharm:
             # match_pattern=re.compile(r'b\'(.*)\'')
             # base64_data=match_pattern.match(base64_data_original).group(1)
             # In terminal:
             base64_data = base64_data_original
         with open(str(self.id) + ".json", 'r') as js:
             json_data = json.load(js)
             img = utils.img_b64_to_arr(json_data['imageData'])
             height, width = img.shape[:2]
             shapes = json_data['shapes']
             for shape in shapes:
                 points = shape['points']
                 for point in points:
                     # match_pattern2 = re.compile(r'(.*)_x(.*)')
                     # match_pattern3 = re.compile(r'(.*)_y(.*)')
                     match_pattern4 = re.compile(r'(.*)_x_y(.*)')
                     if match_pattern4.match(image_name):
                         point[0] = width - point[0]
                         point[1] = height - point[1]
                     # elif match_pattern3.match(image_name):
                     #     point[0] = width - point[0]
                     #     point[1] = point[1]
                     # elif match_pattern2.match(image_name):
                     #     point[0] = point[0]
                     #     point[1] = height - point[1]
                     else:
                         point[0] = point[0]
                         point[1] = point[1]
             json_data['imagePath'] = image_name + ".jpg"
             json_data['imageData'] = None
             json.dump(json_data,
                       open("./" + image_name + ".json", 'w'),
                       indent=2)
Пример #20
0
 def getJsonInfo(self,file_path):
     print(file_path)
     with open(file_path,'r') as f:
         data = json.load(f)
         img = utils.img_b64_to_arr(data['imageData'])
         for shapes in data['shapes']:
             shapes['label'] = 'chromosome'
     with open(file_path,'w') as f:
         json.dump(data,f)
Пример #21
0
 def _image(self, obj, path):
     image = {}
     img_x = utils.img_b64_to_arr(obj['imageData'])
     h, w = img_x.shape[:-1]
     image['height'] = h
     image['width'] = w
     image['id'] = self.img_id
     image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
     return image
Пример #22
0
def json2label(json_folder):
    json_list = glob.glob(os.path.join(json_folder, '*.json'))

    annotations_dir = os.path.join(json_folder, "annotations")
    josn2labels_dir = os.path.join(json_folder, "josn2labels")

    if not os.path.exists(annotations_dir):
        os.makedirs(annotations_dir)
    if not os.path.exists(josn2labels_dir):
        os.makedirs(josn2labels_dir)

    for json_file in json_list:
        temp_name = json_file.split(".")[0].split("/")[-1]

        out_dir = os.path.join(josn2labels_dir, temp_name)
        if not osp.exists(out_dir):
            os.mkdir(out_dir)

        data = json.load(open(json_file))

        if data['imageData']:
            imageData = data['imageData']
        else:
            imagePath = os.path.join(os.path.dirname(json_file),
                                     data['imagePath'])
            with open(imagePath, 'rb') as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode('utf-8')
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {'_background_': 0, '1': 1, '2': 2, '3': 3}

        lbl = utils.shapes_to_label(img.shape, data['shapes'],
                                    label_name_to_value)

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name
        lbl_viz = utils.draw_label(lbl, img, label_names)

        PIL.Image.fromarray(img).save(
            osp.join(out_dir, '%s_img.png' % (temp_name)))
        utils.lblsave(osp.join(out_dir, '%s.png' % (temp_name)), lbl)
        utils.lblsave(osp.join(annotations_dir, '%s.png' % (temp_name)), lbl)
        PIL.Image.fromarray(lbl_viz).save(
            osp.join(out_dir, '%s_label_viz.png' % (temp_name)))

        with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
            for lbl_name in label_names:
                f.write(lbl_name + '\n')

        warnings.warn('info.yaml is being replaced by label_names.txt')
        info = dict(label_names=label_names)
        with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
            yaml.safe_dump(info, f, default_flow_style=False)

        print('Saved to: %s' % out_dir)
Пример #23
0
def main():
    logger.warning('This script is aimed to demonstrate how to convert the'
                   'JSON file to a single image dataset, and not to handle'
                   'multiple JSON files to generate a real-use dataset.')

    # parser = argparse.ArgumentParser()
    # parser.add_argument('json_file')
    # parser.add_argument('-o', '--out', default=None)
    # args = parser.parse_args()

    json_files = glob.glob(r'C:\Users\Zeran\Desktop\loudi\*.json')
    for json_file in json_files:

        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)

        # reload(sys)
        # sys.setdefaultencoding('utf8')
        f = open(json_file, encoding='utf-8')
        text = f.read()
        # text = text.decode("gbk").encode("utf-8")
        data = json.loads(text)

        # data = f.read().decode(encoding='gbk').encode(encoding='utf-8')

        # data = json.load(open(json_file))

        if data['imageData']:
            imageData = data['imageData']
        else:
            imagePath = os.path.join(os.path.dirname(json_file),
                                     data['imagePath'])
            with open(imagePath, 'rb') as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode('utf-8')
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {'_background_': 0}
        for shape in sorted(data['shapes'], key=lambda x: x['label']):
            label_name = shape['label']
            # if label_name in label_name_to_value:
            #     label_value = label_name_to_value[label_name]
            # else:
            #     label_value = len(label_name_to_value)
            label_name_to_value[label_name] = 255
        lbl = utils.shapes_to_label(img.shape, data['shapes'],
                                    label_name_to_value)

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name
        lbl_viz = utils.draw_label(lbl, img, label_names)
        saved_name = os.path.splitext(os.path.basename(json_file))[0] + '.png'
        utils.lblsave(
            osp.join('D:\\coslight\\0304_beforetolabel\\label\\', saved_name),
            lbl)
Пример #24
0
 def _image(self, obj, path):
     image = OrderedDict()
     from labelme import utils
     img_x = utils.img_b64_to_arr(obj['imageData'])
     h, w = img_x.shape[:-1]
     image['file_name'] = os.path.basename(path).replace(".json", ".BMP")
     image['height'] = h
     image['width'] = w
     image['id'] = self.img_id
     return image
 def _image(self, obj, path):
     image = {}
     from labelme import utils
     # utils.img_b64_to_arr读取文件很耗时,若图片大小都一致,可以固定h,w
     img_x = utils.img_b64_to_arr(obj['imageData'])
     h, w = img_x.shape[:-1]
     image['height'] = h
     image['width'] = w
     image['id'] = self.img_id
     image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
     return image
Пример #26
0
def main():

    json_file = '/home/liuenli/Mask_RCNN-master--TrainOwerDatset-master/assets/total'
    list = os.listdir(json_file)
    for i in range(0, len(list)):
        path = os.path.join(json_file, list[i])
        if os.path.isfile(path):
            data = json.load(open(path))
            img = utils.img_b64_to_arr(data['imageData'])
            lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])

            captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
            lbl_viz = utils.draw_label(lbl, img, captions)
            out_dir = osp.basename(list[i]).replace('.', '_')
            out_dir = osp.join(osp.dirname(list[i]), out_dir)
            out_dir=json_file+"/"+out_dir
            if not osp.exists(out_dir):
                os.mkdir(out_dir)

            PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
            # PIL.Image.fromarray(lbl).save()
            labelpath = osp.join(out_dir, 'label.png')
            # PIL.Image.fromarray(lbl).save(labelpath)
            # opencvimg16 = cv2.imread(labelpath)
            # opencvimg.convertTo(opencvimg6,)
            lbl8u=np.zeros((lbl.shape[0],lbl.shape[1]),dtype=np.uint8)
            for i in range(lbl.shape[0]):
                for j in range(lbl.shape[1]):
                    lbl8u[i,j]=lbl[i,j]
            PIL.Image.fromarray(lbl8u).save(labelpath);
            # Alllabelpath="%s"

        PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

        with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
            for lbl_name in lbl_names:
                f.write(lbl_name + '\n')

        warnings.warn('info.yaml is being replaced by label_names.txt')
        info = dict(label_names=lbl_names)
        with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
            yaml.dump(info, f, default_flow_style=False)

        fov=open(osp.join(out_dir,'info.yaml'),'w')
        for key in info:
            fov.writelines(key)
            fov.write(':\n')
        for k,v in lbl_names.items():
            fov.write('  ')
            fov.write(k)
            fov.write(':\n')

        fov.close()
        print('Saved to: %s' % out_dir)
Пример #27
0
def save_image_from_json(json_file, out_dir):
    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = osp.join(osp.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)
    PIL.Image.fromarray(img).save(osp.join(out_dir, 'image.png'))
Пример #28
0
 def _image(self, obj, path):
     image = {}
     from labelme import utils
     img_x = utils.img_b64_to_arr(obj['imageData'])
     h, w = img_x.shape[:-1]
     image['height'] = h
     image['width'] = w
     self.img_id = int(os.path.basename(path).split(".json")[0])
     image['id'] = self.img_id
     # image['id'] = self.img_id
     image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
     return image
def label_convert(json_file_path, png_label_path, class_names):
    if not os.path.isdir(json_file_path):
        raise ValueError('Input path does not exist!\n')
    os.makedirs(png_label_path, exist_ok=True)

    # all the json annotation file list
    json_files = glob.glob(os.path.join(json_file_path, '*.json'))

    # form a dict of class_name to label value
    label_name_to_value = {}
    for i, class_name in enumerate(class_names):
        label_name_to_value[class_name] = i

    # count class item number
    class_count = OrderedDict([(item, 0) for item in class_names])

    pbar = tqdm(total=len(json_files), desc='Label converting')
    for i, json_file in enumerate(json_files):
        data = json.load(open(json_file))

        # get image info
        imageData = data.get("imageData")
        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"].replace('\\', '/'))
            with open(imagePath, "rb") as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode("utf-8")
        img = utils.img_b64_to_arr(imageData)

        # convert json labels to numpy label array
        # and save to png
        label_array, _ = utils.shapes_to_label(
            img.shape, data["shapes"], label_name_to_value
        )

        # count object class for statistic
        label_list = list(np.unique(label_array))
        for label in label_list:
            class_name = class_names[label]
            class_count[class_name] = class_count[class_name] + 1

        utils.lblsave(os.path.join(png_label_path, os.path.basename(json_file)+".png"), label_array)
        pbar.update(1)

    pbar.close()
    # show item number statistic
    print('Image number for each class:')
    for (class_name, number) in class_count.items():
        if class_name == 'background':
            continue
        print('%s: %d' % (class_name, number))
    print('total number of converted images: ', len(json_files))
Пример #30
0
 def _check_image_height_and_width(imageData, imageHeight, imageWidth):
     img_arr = utils.img_b64_to_arr(imageData)
     if imageHeight is not None and img_arr.shape[0] != imageHeight:
         logger.error(
             'imageHeight does not match with imageData or imagePath, '
             'so getting imageHeight from actual image.')
         imageHeight = img_arr.shape[0]
     if imageWidth is not None and img_arr.shape[1] != imageWidth:
         logger.error(
             'imageWidth does not match with imageData or imagePath, '
             'so getting imageWidth from actual image.')
         imageWidth = img_arr.shape[1]
     return imageHeight, imageWidth
Пример #31
0
def folder_files_to_list(path):
    print(path)
    files = [path + f for f in listdir(path) if isfile(join(path, f))]
    x = []
    y = []
    labels_count = []
    for file in files:
        with open(file) as json_file:
            data = json.load(json_file)
            x.append(utils.img_b64_to_arr(data['imageData']))
            y.append(data['shapes'][0]['label'])
            labels_count.append(len(data['shapes']))
    return x, y, labels_count
Пример #32
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    args = parser.parse_args()

    json_file = args.json_file

    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')

    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in data['shapes']:
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value

    lbl = utils.shapes_to_label(
        img.shape, data['shapes'], label_name_to_value)

    captions = ['{}: {}'.format(lv, ln)
                for ln, lv in label_name_to_value.items()]
    lbl_viz = utils.draw_label(lbl, img, captions)

    plt.subplot(121)
    plt.imshow(img)
    plt.subplot(122)
    plt.imshow(lbl_viz)
    plt.show()
Пример #33
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    args = parser.parse_args()

    json_file = args.json_file

    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)

    plt.subplot(121)
    plt.imshow(img)
    plt.subplot(122)
    plt.imshow(lbl_viz)
    plt.show()
Пример #34
0
def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")

    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()

    json_file = args.json_file

    if args.out is None:
        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    data = json.load(open(json_file))

    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')

    img = utils.img_b64_to_arr(imageData)

    label_name_to_value = {'_background_': 0}
    for shape in data['shapes']:
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value

    # label_values must be dense
    label_values, label_names = [], []
    for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
        label_values.append(lv)
        label_names.append(ln)
    assert label_values == list(range(len(label_values)))

    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    captions = ['{}: {}'.format(lv, ln)
                for ln, lv in label_name_to_value.items()]
    lbl_viz = utils.draw_label(lbl, img, captions)

    PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
    PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
        for lbl_name in label_names:
            f.write(lbl_name + '\n')

    warnings.warn('info.yaml is being replaced by label_names.txt')
    info = dict(label_names=label_names)
    with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        yaml.safe_dump(info, f, default_flow_style=False)

    print('Saved to: %s' % out_dir)