def example_2(c, xc, tc):
     """
     example #2: r = 0.83333 (example 10.3, table 10.4)
     :param c: coefficient
     :param xc: count of point on Ox axis
     :param tc: count of point on time axis
     """
     Solve.solve_exercise(lambda: ExplicitScheme.solve(
         lambda x: 4 * x - 4 * x ** 2, 0, 0,
         1, 0.33333, c, xc, tc
     ), plot_projection_res=True, print_res=True, ain=100)
 def example(c, xc, tc):
     """
     example #1: (example 10.4, table 10.5)
     :param c: coefficient
     :param xc: count of point on Ox axis
     :param tc: count of point on time axis
     """
     Solve.solve_exercise(lambda: ExplicitScheme.solve(
         lambda x: math.sin(math.pi * x) + math.sin(3 * math.pi * x), 0, 0,
         1, 0.1, c, xc, tc
     ), plot_projection_res=True, print_res=True, ain=100)
Пример #3
0
 def ex2(h, tol, max_steps):
     """
     example #2: (example 10.6, table 10.7)
     :param h: step
     :param tol: maximum delta
     :param max_steps: max count of steps
     """
     Solve.solve_exercise(lambda: Dirichlel.solve_diff(
         lambda x, u, i, j: u[i, j + 1], lambda x: 180,
         lambda x: 80, lambda x: 0,
         4, 4, h, tol, max_steps
     ), plot_projection_res=True, ain=15, print_res=True)
Пример #4
0
 def ex1(h, tol, max_steps):
     """
     example #1: (example 10.5, table 10.6)
     :param h: step
     :param tol: maximum delta
     :param max_steps: max count of steps
     """
     Solve.solve_exercise(lambda: Dirichlel.solve(
         lambda x: 20, lambda x: 180,
         lambda x: 80, lambda x: 0,
         4, 4, h, tol, max_steps
     ), plot_projection_res=True, ain=15, print_res=True)
Пример #5
0
 def ex2(h, tol, max_steps):
     """
     example #2: (example 10.6, table 10.7)
     :param h: step
     :param tol: maximum delta
     :param max_steps: max count of steps
     """
     Solve.solve_exercise(lambda: Dirichlel.solve_diff(
         lambda x, u, i, j: u[i, j + 1], lambda x: 180, lambda x: 80, lambda
         x: 0, 4, 4, h, tol, max_steps),
                          plot_projection_res=True,
                          ain=15,
                          print_res=True)
Пример #6
0
 def ex1(h, tol, max_steps):
     """
     example #1: (example 10.5, table 10.6)
     :param h: step
     :param tol: maximum delta
     :param max_steps: max count of steps
     """
     Solve.solve_exercise(
         lambda: Dirichlel.solve(lambda x: 20, lambda x: 180, lambda x: 80,
                                 lambda x: 0, 4, 4, h, tol, max_steps),
         plot_projection_res=True,
         ain=15,
         print_res=True)
Пример #7
0
    def ex3(c, a, l, msc, xc, tc):
        Solve.solve_exercise(lambda: FiniteDifference.solve(
            lambda z: a * math.sin(math.pi / l * msc * z),
            lambda z: 0,
            1, 0.5, c, xc, tc
        ), plot_projection_res=True, ain=15)

        def analytic_solve(func, x_boundary, t_boundary, x_points_count, t_points_count):
            x_step = x_boundary / (x_points_count - 1)
            t_step = t_boundary / (t_points_count - 1)
            x = [i * x_step for i in range(x_points_count)]
            t = [i * t_step for i in range(t_points_count)]
            u = pylab.zeros((t_points_count, x_points_count))
            for i in range(t_points_count):
                for j in range(x_points_count):
                    u[i][j] = func(x[j], t[i])
            return x, t, u

        Solve.solve_exercise(lambda: analytic_solve(
            lambda z, temp: a * math.sin(math.pi / l * z * msc) * math.cos(math.pi / l * msc * c * temp),
            1, 0.5, xc, tc
        ), plot_projection_res=True, ain=15)
    def ex3(c, a, l, msc, xc, tc):
        Solve.solve_exercise(lambda: FiniteDifference.solve(
            lambda z: a * math.sin(math.pi / l * msc * z), lambda z: 0, 1, 0.5,
            c, xc, tc),
                             plot_projection_res=True,
                             ain=15)

        def analytic_solve(func, x_boundary, t_boundary, x_points_count,
                           t_points_count):
            x_step = x_boundary / (x_points_count - 1)
            t_step = t_boundary / (t_points_count - 1)
            x = [i * x_step for i in range(x_points_count)]
            t = [i * t_step for i in range(t_points_count)]
            u = pylab.zeros((t_points_count, x_points_count))
            for i in range(t_points_count):
                for j in range(x_points_count):
                    u[i][j] = func(x[j], t[i])
            return x, t, u

        Solve.solve_exercise(lambda: analytic_solve(
            lambda z, temp: a * math.sin(math.pi / l * z * msc) * math.cos(
                math.pi / l * msc * c * temp), 1, 0.5, xc, tc),
                             plot_projection_res=True,
                             ain=15)
 def ex2(c, xc, tc):
     Solve.solve_exercise(lambda: FiniteDifference.solve(
         lambda z: z if 0 <= z <= 3 / 5 else 1.5 - 1.5 * z, lambda z: 0, 1,
         0.5, c, xc, tc),
                          plot_projection_res=True,
                          ain=150)
 def ex1(c, xc, tc):
     Solve.solve_exercise(lambda: FiniteDifference.solve(
         lambda z: math.sin(math.pi * z) + math.sin(2 * math.pi * z), lambda
         z: 0, 1, 0.5, c, xc, tc),
                          plot_projection_res=True,
                          ain=15)
Пример #11
0
 def ex2(c, xc, tc):
     Solve.solve_exercise(lambda: FiniteDifference.solve(
         lambda z: z if 0 <= z <= 3 / 5 else 1.5 - 1.5 * z,
         lambda z: 0,
         1, 0.5, c, xc, tc
     ), plot_projection_res=True, ain=150)
Пример #12
0
 def ex1(c, xc, tc):
     Solve.solve_exercise(lambda: FiniteDifference.solve(
         lambda z: math.sin(math.pi * z) + math.sin(2 * math.pi * z),
         lambda z: 0,
         1, 0.5, c, xc, tc
     ), plot_projection_res=True, ain=15)