def __init__(self, start, end, rate, step_size=50):
     self.start = start
     self.end = end
     self.rate = rate
     now = datetime.datetime.now()
     self.log_direc = "/media/data/Data/Logs/{}_{}_{}_{}_{}/".format(
         now.year, now.month, now.day, now.hour, now.minute)
     try:
         os.mkdir(self.log_direc)
     except FileExistsError as e:
         print(e)
     self.i = 0
     self.shaker = shaker.Shaker()
     self.shaker.change_duty(self.start)
     self.step_size = step_size
     cam_num = camera.guess_camera_number()
     port = STEPPER_CONTROL
     self.ard = arduino.Arduino(port)
     self.motors = stepper.Stepper(self.ard)
     self.motors.move_motor(1, 100, '+')
     self.motors.move_motor(2, 100, '+')
     self.motors.move_motor(1, 100, '-')
     self.motors.move_motor(2, 100, '-')
     self.cam = camera.Camera(cam_num=cam_num)
     im = self.cam.get_frame()
     self.hex, self.center, self.crop, self.mask = self.find_hexagon(im)
     im = images.crop_and_mask(im, self.crop, self.mask)
     self.im_shape = im.shape
     im = images.draw_polygon(im, self.hex)
     im = images.draw_circle(im, self.center[0], self.center[1], 3)
     images.display(im)
def get_circles(frame):
    red = frame[:, :, 0] - frame[:, :, 2]
    red = images.threshold(red, 65)
    opened = images.opening(red, (31, 31))
    w = opened.shape[1]
    im1, im2 = opened[:, :w//2], opened[:, w//2:]
    images.display(im1)
    m1 = list(images.center_of_mass(im1))
    m2 = list(images.center_of_mass(im2))
    m2[0] += w//2
    return np.array([[m1[0], m1[1], 50], [m2[0], m2[1], 50]])
Пример #3
0
    def __init__(self):
        self.shaker = shaker.Shaker()
        self.shaker.change_duty(600)

        port = STEPPER_CONTROL
        self.ard = arduino.Arduino(port)
        self.motors = stepper.Stepper(self.ard)

        cam_num = camera.guess_camera_number()
        self.cam = camera.Camera(cam_num=cam_num)
        im = self.cam.get_frame()
        self.hex, self.center, self.crop, self.mask = self.find_hexagon(im)
        im = images.crop_and_mask(im, self.crop, self.mask)
        self.im_shape = im.shape
        im = images.draw_polygon(im, self.hex)
        im = images.draw_circle(im, self.center[0], self.center[1], 3)
        images.display(im)
Пример #4
0
from particletracking import dataframes
from labvision import video, images
import numpy as np

import filehandling

file_store = "/media/data/Data/FirstOrder/Hysterisis/FlatPlate/Trial2/0.2_up_1.hdf5"
file_vid = "/media/data/Data/FirstOrder/Hysterisis/FlatPlate/Trial2/0.2_up_1.MP4"

metadata = dataframes.load_metadata(file_store)
vid = video.ReadVideo(file_vid)

box = metadata['crop']

frame = vid.read_frame(vid.num_frames - 1)
frame = images.crop(frame, box)

xmin = 750
xmax = 1250
ymin = 750
ymax = 1250

vertices = np.array([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]])

frame = images.draw_polygon(frame, vertices, thickness=3)
images.save(
    frame,
    "/media/data/Data/FirstOrder/Hysterisis/FlatPlate/Trial2/HexagonFigures/box_end.png"
)
images.display(frame)
p1 = [333, 1318]
p2 = [1784, 528]
midpoint = np.array([p1[0] - p2[0], p1[1] - p2[1]])
h = h + midpoint[1]
x = x + midpoint[0]

m = (p2[1] - p1[1]) / (p2[0] - p1[0])
a = -atan(m)
print(a)
points = np.vstack((x, h)).T
print(points.shape)
points = rotate_points(points, midpoint, -a)
print(points[0])
print(points[1])

points[:, 0] += -points[0, 0] + p1[0]
points[:, 1] += -points[0, 1] + p1[1]

points = np.int32(points)
# points = points.reshape((points.shape[0], 1, points.shape[1]))
# lines = [((a[0], b[0]), (a[1], b[1])) for a, b in zip(points[1:], points[:-1])]
# print(lines)
im = cv2.polylines(im, [points], False, images.YELLOW, 10)
im = images.rotate(im, 30)
# im = images.draw_contours(im, [points], images.YELLOW, 10)
images.display(im)
images.save(im, direc + 'boundary.jpeg')
# plt.savefig(direc+'boundary.jpeg', quality=95, dpi=300)
# plt.show()
Пример #6
0
from labvision import video, images

vid = video.ReadVideo("/home/ppxjd3/Code/labvision/labvision/data/numbered_video.mp4", frame_range=(0, 100, 10))

for f in range(vid.num_frames):
    frame = vid.read_next_frame()
    images.display(frame, f"{f}")
Пример #7
0
 def test(self):
     filepath = os.path.join(data_dir, "maxresdefault.jpg")
     im = images.read_img(filepath)
     im = images.rotate(im, 90)
     images.display(im)
def run(direc, lattice_spacing=5):
    files = filehandling.get_directory_filenames(direc + '/*.png')
    print(files)
    savename = direc + '/data.hdf5'

    N = len(files)

    # load images
    ims = [images.load(f, 0) for f in tqdm(files, 'Loading images')]

    images.display(ims[0])
    # Find Circles
    ims = [images.bgr_to_gray(im) for im in ims]
    circles = [
        images.find_circles(im, 27, 200, 7, 16, 16)
        for im in tqdm(ims, 'Finding Circles')
    ]

    # Save data
    data = dataframes.DataStore(savename, load=False)
    for f, info in tqdm(enumerate(circles), 'Adding Circles'):
        data.add_tracking_data(f, info, ['x', 'y', 'r'])

    # Calculate order parameter
    calc = statistics.PropertyCalculator(data)
    calc.order()

    # Get the course graining width
    cgw = get_cgw(data.df.loc[0]) / 2

    # Create the lattice points
    x = np.arange(0, max(data.df.x), lattice_spacing)
    y = np.arange(0, max(data.df.y), lattice_spacing)
    x, y = np.meshgrid(x, y)

    # Calculate the coarse order fields
    fields = [
        coarse_order_field(data.df.loc[f], cgw, x, y)
        for f in tqdm(range(N), 'Calculating Fields')
    ]

    # Calculate the field threshold
    field_threshold = get_field_threshold(fields, lattice_spacing, ims[0])

    # Find the contours representing the boundary in each frame
    contours = [
        find_contours(f, field_threshold)
        for f in tqdm(fields, 'Calculating contours')
    ]

    # Multiply the contours by the lattice spacing
    contours = [c * lattice_spacing for c in contours]

    # Find the angle of the image to rotate the boundary to the x-axis
    a, c, p1, p2 = get_angle(ims[0])
    print(p1)
    print(p2)
    # Rotate the selection points and the contours by the angle
    p1 = rotate_points(np.array(p1), c, a)
    p2 = rotate_points(np.array(p2), c, a)
    contours = [rotate_points(contour.squeeze(), c, a) for contour in contours]

    xmin = int(p1[0])
    xmax = int(p2[0])
    h = int(p1[1])

    # Get the heights of the fluctuations from the straight boundary
    hs = [
        get_h(contour, ims[0].shape, xmin, xmax, h)
        for contour in tqdm(contours, 'Calculating heights')
    ]

    # Calculate the fourier transforms for all the frames
    L = xmax - xmin
    pixels_to_mms = 195 / L
    print("pixels_to_mms = ", pixels_to_mms)

    # convert to mm
    hs = [h * pixels_to_mms for h in hs]
    L = L * pixels_to_mms
    x = np.linspace(0, L, len(hs[0]))

    np.savetxt(direc + '/x.txt', x)
    np.savetxt(direc + '/hs.txt', hs)

    # k, yplot = get_fourier(hs, L)

    return k, yplot
from labvision import video, images

vid = video.ReadVideo(
    "/home/ppxjd3/Code/labvision/labvision/data/numbered_video.mp4")

frame_numbers = [0, 1, 2, 3, 10, 11, 20, 21, 20, 19, 18]

for f in frame_numbers:
    frame1 = vid.read_frame(f)
    frame2 = vid.read_frame(f)
    frame = images.hstack(frame1, frame2)
    images.display(frame, title=f'{f}')