Пример #1
0
 def test_stacking_in_estimator_mitigation_base_and_final(self):
     model = StackingClassifier(
         estimators=[
             ("pr", PrejudiceRemover(**self.fairness_info)),
             ("lr", LogisticRegression()),
         ],
         final_estimator=PrejudiceRemover(**self.fairness_info),
         passthrough=True,
     )
     self._attempt_fit_predict(model)
Пример #2
0
 def test_stacking_in_estimator_mitigation_base_only(self):
     model = StackingClassifier(
         estimators=[
             ("pr", PrejudiceRemover(**self.fairness_info)),
             ("lr", LogisticRegression()),
         ]
     )
     self._attempt_fit_predict(model)
Пример #3
0
 def test_prejudice_remover_pd_cat(self):
     fairness_info = self.creditg_pd_cat["fairness_info"]
     trainable_remi = PrejudiceRemover(
         **fairness_info, preprocessing=self.prep_pd_cat
     )
     self._attempt_remi_creditg_pd_cat(fairness_info, trainable_remi, 0.70, 0.80)
Пример #4
0
 def test_prejudice_remover_pd_num(self):
     fairness_info = self.creditg_pd_num["fairness_info"]
     trainable_remi = PrejudiceRemover(**fairness_info)
     self._attempt_remi_creditg_pd_num(fairness_info, trainable_remi, 0.73, 0.83)
Пример #5
0
 def test_bagging_in_estimator_mitigation_base(self):
     model = BaggingClassifier(base_estimator=PrejudiceRemover(
         **self.fairness_info))
     self._attempt_fit_predict(model)
Пример #6
0
 def test_adaboost_in_estimator_mitigation_base(self):
     model = AdaBoostClassifier(base_estimator=PrejudiceRemover(
         **self.fairness_info))
     self._attempt_fit_predict(model)