Пример #1
0
    def extractBlockFromImage(self, imgAry, blockSlices, timepoint, numTimepoints):
        padSlices = []
        actualPadding = []
        for coreSlice, pad, l in zip(blockSlices, self.padding, imgAry.shape):
            # normalize 'None' values to appropriate positions
            normStart, normStop, normStep = getStartStopStep(coreSlice, l)
            start = max(0, normStart-pad)
            stop = min(l, normStop+pad)
            startPadSize = normStart - start
            stopPadSize = stop - normStop
            padSlices.append(slice(start, stop, normStep))
            actualPadding.append((startPadSize, stopPadSize))

        # calculate "core" slices into values array based on actual size of padding
        vals = imgAry[padSlices]
        coreValSlices = [slice(0, 1, 1)]  # start with slice for time
        for actualPad, l in zip(actualPadding, vals.shape):
            actualStartPad, actualStopPad = actualPad
            coreValSlices.append(slice(actualStartPad, l-actualStopPad, 1))

        # add additional "time" dimension onto front of val
        val = expand_dims(imgAry[padSlices], axis=0)
        origShape = [numTimepoints] + list(imgAry.shape)
        imgSlices = [slice(timepoint, timepoint+1, 1)] + list(blockSlices)
        padSlices = [slice(timepoint, timepoint+1, 1)] + padSlices
        return PaddedBlockGroupingKey(origShape, padSlices, imgSlices, tuple(val.shape),
                                      coreValSlices, self.pixelsPerDim), val
Пример #2
0
    def combiningFunction(self, blockNumAndCollectedSeries):
        blockNum, collectedSeries = blockNumAndCollectedSeries
        blockSlices = self._slicesProduct[blockNum]
        imgShape = [self.nimages] + list(self.dims)
        vecShape = [-1] + [1] * len(self.dims)  # needed to coerce vector broadcast to work
        key = BlockGroupingKey(tuple(imgShape), tuple([slice(0, self.nimages, 1)] + list(blockSlices)))
        aryShape = [self.nimages]
        arySpatialOffsets = []
        for blockSlice, refSize in zip(blockSlices, self.dims):
            start, stop, _ = getStartStopStep(blockSlice, refSize)
            aryShape.append(stop - start)
            arySpatialOffsets.append(start)

        ary = zeros(aryShape, dtype=self.dtype)
        for seriesKey, seriesAry in collectedSeries:
            arySlices = [slice(0, self.nimages)] + \
                        [slice(i-offset, i-offset+1) for (i, offset) in zip(seriesKey, arySpatialOffsets)]
            # this is an inefficient assignment,
            # since the first dimension of ary is not contiguous in memory:
            ary[arySlices] = seriesAry.reshape(vecShape)
        return key, ary