Пример #1
0
    mmin = -0.3  # min data value
    mmax = 2  # max data value
    data[data < mmin] = mmin
    data[data > mmax] = mmax
    #data = (data-mmin)/(mmax-mmin)

    # initial guess
    u = np.zeros([det, det, det], dtype='float32')
    lamd = np.zeros([ntheta, det, det], dtype='float32')
    flow = np.zeros([ntheta, det, det, 2], dtype='float32')
    psi = data.copy()

    # optical flow parameters
    pars = [0.5, 0, 256, 4, 5, 1.1, 4]
    niter = 257
    with lcg.SolverLam(det, det, det, det, ntheta, phi,
                       float(sys.argv[1])) as tslv:
        with dc.SolverDeform(ntheta, det, det) as dslv:
            rho = 0.5
            h0 = psi
            for k in range(niter):
                # registration
                tic()
                flow = dslv.registration_flow_batch(psi,
                                                    data,
                                                    mmin,
                                                    mmax,
                                                    flow.copy(),
                                                    pars,
                                                    nproc=42)
                t1 = toc()
                tic()
    # initial guess
    u = np.zeros([det, det, det], dtype='float32')
    psi1 = data.copy()
    psi2 = np.zeros([3, det, det, det], dtype='float32')
    lamd1 = np.zeros([ntheta, det, det], dtype='float32')
    lamd2 = np.zeros([3, det, det, det], dtype='float32')

    flow = np.zeros([ntheta, det, det, 2], dtype='float32')

    # optical flow parameters
    pars = [0.5, 1, 1024, 4, 5, 1.1, 4]
    niter = 257
    alpha = 8e-14

    with lcg.SolverLam(det, det, det, det, ntheta, phi, 1e-2) as tslv:
        with dc.SolverDeform(ntheta, det, det, 42) as dslv:
            rho1 = 0.5
            rho2 = 0.5

            h01 = psi1
            h02 = psi2

            for k in range(niter):
                # registration
                tic()

                flow = dslv.registration_flow_batch(psi1,
                                                    data,
                                                    mmin,
                                                    mmax,
Пример #3
0
    F = np.ndarray.flatten(F)    
    res = us2eq(-x, F, 1e-3, N)    
    return res    

n0 = 16
n1 = 16
n2 = 8
det = 8
ntheta = 8
phi = np.pi/3
theta = np.linspace(0,2*np.pi,ntheta,endpoint=False).astype('float32')
f = np.zeros([n0,n1,n2]).astype('complex64')
f[n0//8:3*n0//8,n1//4:3*n1//4,n2//4:3*n2//4]=1


with lcg.SolverLam(n0, n1, n2, det, ntheta, phi,1e-3) as slv:

    g_gpu = slv.fwd_lam(f,theta)
    g = fwd_laminography(f, theta, phi, det, [n0,n1,n2])    
    print('fwd accuracy:', np.linalg.norm(g_gpu-g)/np.linalg.norm(g_gpu))
    ff = adj_laminography(g, theta, phi, det, [n0,n1,n2])
    ff_gpu = slv.adj_lam(g_gpu, theta)
    print('adj accuracy:', np.linalg.norm(ff_gpu-ff)/np.linalg.norm(ff_gpu))
    print('Adj test 1')
    print(np.sum(f*np.conj(ff)))
    print(np.sum(g*np.conj(g)))
    print('Adj test 2')
    print(np.sum(f*np.conj(ff_gpu)))
    print(np.sum(g_gpu*np.conj(g_gpu)))
    gg_gpu = slv.fwd_lam(ff_gpu,theta)
    print('Norm test')