Пример #1
0
def test_flow__distance_irregular_grid_d4():
    """Test to demonstrate that flow__distance utility works as expected with irregular grids"""

    # instantiate a model grid

    dx = 1.0
    hmg = HexModelGrid(5, 3, dx)

    # instantiate and add the elevation field

    hmg.add_field("topographic__elevation",
                  hmg.node_x + np.round(hmg.node_y),
                  at="node")

    # instantiate the expected flow__distance array

    flow__distance_expected = np.array([
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        dx,
        0.0,
        0.0,
        dx,
        dx,
        2.0 * dx,
        0.0,
        0.0,
        2.0 * dx,
        2.0 * dx,
        0.0,
        0.0,
        0.0,
        0.0,
    ])

    # setting boundary conditions

    hmg.set_closed_nodes(hmg.boundary_nodes)

    # calculating flow directions with FlowAccumulator component: D4 algorithm

    fr = FlowAccumulator(hmg, flow_director="D4")
    fr.run_one_step()

    # calculating flow distance map

    flow__distance = calculate_flow__distance(hmg,
                                              add_to_grid=True,
                                              noclobber=False)

    # test that the flow__distance utility works as expected

    assert_almost_equal(flow__distance_expected, flow__distance, decimal=10)
Пример #2
0
def test_flow__distance_irregular_grid_d4():
    """Test to demonstrate that flow__distance utility works as expected with irregular grids"""

    # instantiate a model grid

    dx = 1.0
    hmg = HexModelGrid(5, 3, dx)

    # instantiate and add the elevation field

    hmg.add_field(
        "topographic__elevation", hmg.node_x + np.round(hmg.node_y), at="node"
    )

    # instantiate the expected flow__distance array

    flow__distance_expected = np.array(
        [
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            dx,
            0.0,
            0.0,
            dx,
            dx,
            2.0 * dx,
            0.0,
            0.0,
            2.0 * dx,
            2.0 * dx,
            0.0,
            0.0,
            0.0,
            0.0,
        ]
    )

    # setting boundary conditions

    hmg.set_closed_nodes(hmg.boundary_nodes)

    # calculating flow directions with FlowAccumulator component: D4 algorithm

    fr = FlowAccumulator(hmg, flow_director="D4")
    fr.run_one_step()

    # calculating flow distance map

    flow__distance = calculate_flow__distance(hmg, add_to_grid=True, noclobber=False)

    # test that the flow__distance utility works as expected

    assert_almost_equal(flow__distance_expected, flow__distance, decimal=10)
Пример #3
0
def main():

    # INITIALIZE

    # User-defined parameters
    nr = 21
    nc = 21
    plot_interval = 0.5
    run_duration = 25.0
    report_interval = 5.0  # report interval, in real-time seconds

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)

    # Close the grid boundaries
    hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent the disease status of a population.
    ns_dict = { 0 : 'fluid', 1 : 'grain' }
    xn_list = setup_transition_list()

    # Create data and initialize values. We start with the 3 middle columns full
    # of grains, and the others empty.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')
    middle = 0.25*(nc-1)*sqrt(3)
    is_middle_cols = logical_and(hmg.node_x<middle+1., hmg.node_x>middle-1.)
    node_state_grid[where(is_middle_cols)[0]] = 1

    # Create the CA model
    ca = OrientedHexCTS(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print('Current sim time',current_time,'(',100*current_time/run_duration,'%)')
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state,
               plot_each_transition=False)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()
Пример #4
0
def main():
    
    # INITIALIZE
    
    # User-defined parameters
    nr = 21
    nc = 21
    plot_interval = 0.5
    run_duration = 25.0
    report_interval = 5.0  # report interval, in real-time seconds
    
    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)
    
    # Close the grid boundaries
    hmg.set_closed_nodes(hmg.open_boundary_nodes)
    
    # Set up the states and pair transitions.
    # Transition data here represent the disease status of a population.
    ns_dict = { 0 : 'fluid', 1 : 'grain' }
    xn_list = setup_transition_list()

    # Create data and initialize values. We start with the 3 middle columns full
    # of grains, and the others empty.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')
    middle = 0.25*(nc-1)*sqrt(3)
    is_middle_cols = logical_and(hmg.node_x<middle+1., hmg.node_x>middle-1.)
    node_state_grid[where(is_middle_cols)[0]] = 1
    
    # Create the CA model
    ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid)
    
    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)
    
    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:
        
        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)'
            next_report = current_real_time + report_interval
        
        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state, 
               plot_each_transition=False)
        current_time += plot_interval
        
        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()