Пример #1
0
 def setUp(self):
     super(TestOnDenseGrid, self).setUp()
     sparse_grid_context = nql_test_lib.make_grid()
     context = nql.NeuralQueryContext()
     # copy the grid but densify some of it
     context.declare_relation('n', 'place_t', 'place_t')
     context.declare_relation('s', 'place_t', 'place_t')
     context.declare_relation('e', 'place_t', 'place_t')
     context.declare_relation('w', 'place_t', 'place_t')
     context.declare_relation('color', 'place_t', 'color_t', dense=True)
     context.declare_relation('distance_to', 'place_t', 'corner_t')
     # copy the type definitions
     for type_name in sparse_grid_context.get_type_names():
         entity_list = [
             sparse_grid_context.get_entity_name(i, type_name)
             for i in range(sparse_grid_context.get_max_id(type_name))
         ]
         context.extend_type(type_name, entity_list)
     # copy the data over
     for r in sparse_grid_context.get_relation_names():
         m = sparse_grid_context.get_initial_value(r)
         if context.is_dense(r):
             context.set_initial_value(r, m.todense())
         else:
             context.set_initial_value(r, m)
     self.context = context
     self.session = tf.Session()
Пример #2
0
 def setUp(self):
     super(TestOnGrid, self).setUp()
     self.context = nql_test_lib.make_grid()
     self.session = tf.Session()