Пример #1
0
 def save_model(self, save_path):
     with open(save_path, 'w') as f:
         data = L.get_all_param_values(self.network)
         pkl.dump(data, f)
         for item in self.trackers:
             data = L.get_all_param_values(item)
             pkl.dump(data, f)
Пример #2
0
	def get_param_values(self):
		'''
		returns a list of the trainable parameters *values*, as
		np.ndarray's.
		'''
		return (
			get_all_param_values(self.l_embed_query, trainable=True) +
			get_all_param_values(self.l_embed_context, trainable=True)
		)
Пример #3
0
def train(data_train, data_val, train_fn, val_fn, network, max_epochs=100, patience=20, save_run=True, eval_fn=None):
    """Generic train strategy for neural networks
    (batch training, train/val sets, patience)

    Trains a neural network according to some data (list of inputs, targets)
    and a train function and an eval function on that data"""
    print("training...")

    run = []
    best_model = None
    if patience <= 0:
        patience = max_epochs
    patience_val = 0
    best_val = None
    
    for epoch in range(max_epochs):
        start_time = time.time()
        train_err, val_err = train_iteration(data_train, data_val,
                                             train_fn, val_fn)

        run.append(layers.get_all_param_values(network))
        if np.isnan(val_err) or np.isnan(train_err):
            print("Train error or validation error is NaN, "
                  "stopping now.")
            break
        # Calculating patience
        if best_val == None or val_err < best_val:
            best_val = val_err
            patience_val = 0
            best_model = layers.get_all_param_values(network)
        else:
            patience_val += 1
            if patience_val > patience:
                print("No improvements after {} iterations, "
                      "stopping now".format(patience))
                break

        # Then we print the results for this epoch:
        print("Epoch {} of {} took {:.3f}s".format(
            epoch + 1, max_epochs, time.time() - start_time))
        print("  training loss:\t\t{:.6f}".format(train_err))
        print("  validation loss:\t\t{:.6f}".format(val_err))
        try:
            print("  validation accuracy:\t\t{:.2f} %".format(
                val_acc / val_batches * 100))
        except:
            if eval_fn != None:
                acc = eval_fn(*data_val)
            print("  validation accuracy:\t\t{:.2f} %".format(acc))

    return best_model, run
Пример #4
0
def parameter_analysis(layer):
    all_params = ll.get_all_param_values(layer, trainable=True)
    param_names = [p.name for p in ll.get_all_params(layer, trainable=True)]
    print_gradinfo(param_names, {'nneg':[np.count_nonzero(p < 0) / np.product(p.shape) for p in all_params],
                                 'norm':[np.linalg.norm(p) for p in all_params],
                                 'shape':[p.shape for p in all_params]})
    """
Пример #5
0
def multi_driver_training(options):
    """ Train model using all drivers' data in the given datapath."""
    print("Loading data...")
    dataset = load_all(options)

    print("Building model and compiling functions...")
    net = models.cnn_1(options, output_size=len(dataset['label_map']))
    # net = models.softmax_only(output_size=len(dataset['label_map']))

    print("Starting training...")
    start_time = time.time()
    try:
        train_loop(dataset['train_data'], dataset['val_data'], net, options)
        print('Training Complete...')
    except KeyboardInterrupt:
        print('Keyboard Interrupt...')
    end_time = time.time()

    print('--------------------')
    print('   Saving model, check logs for results.\n'
          '   Time taken: {0}\n'
          .format(end_time - start_time))

    utils.save_model(model=get_all_param_values(net), options=options)
    return net
def load_model_predict(PATH_simresult, test_set_X):
    # Load sim results
    print 'loading', PATH_simresult, '\n'
    with open(PATH_simresult, "rb") as f:
        temp = pickle.load(f)
        network = temp[-1]
        
    best_network_params = get_all_param_values(network)
    # extract input var
    print 'extract input var \n'
    X = get_all_layers(network)[0].input_var

    # build test function
    print 'build test function and reinit network \n'
    test_fn = build_test_func(test_set_X,
                              network, X)

    reinitiate_set_params(network,
                          weights=best_network_params)

    print 'test set shape', test_set_X.shape, 'type:', type(test_set_X), '\n'

    print 'make prediction \n'
    # predictedy = test_fn(test_set_X)
    # batched implementation
    batch_size = 128
    n_test_batches = test_set_X.shape[0] // batch_size + 1
    test_set_x_size = test_set_X.shape[0]
    predictedy = [test_fn(
        test_set_X[index * batch_size: min((index + 1) * batch_size, test_set_x_size)])
                  for index in range(n_test_batches)]

    predictedy = np.vstack(predictedy)
    return  predictedy
Пример #7
0
    def summary(self, light=False):
        """ Print a summary of the network architecture """

        layer_list = get_all_layers(self.output_layer)

        def filter_function(layer):
            """ We only display the layers in the list below"""
            return np.any([isinstance(layer, layer_type) for layer_type in
                           [InputLayer, Conv2DLayer, Pool2DLayer, Deconv2DLayer, ConcatLayer]])

        layer_list = filter(filter_function, layer_list)
        output_shape_list = map(get_output_shape, layer_list)
        layer_name_function = lambda s: str(s).split('.')[3].split('Layer')[0]

        if not light:
            print('-' * 75)
            print 'Warning : all the layers are not displayed \n'
            print '    {:<15} {:<20} {:<20}'.format('Layer', 'Output shape', 'W shape')

            for i, (layer, output_shape) in enumerate(zip(layer_list, output_shape_list)):
                if hasattr(layer, 'W'):
                    input_shape = layer.W.get_value().shape
                else:
                    input_shape = ''

                print '{:<3} {:<15} {:<20} {:<20}'.format(i + 1, layer_name_function(layer), output_shape, input_shape)
                if isinstance(layer, Pool2DLayer) | isinstance(layer, Deconv2DLayer):
                    print('')

        print '\nNumber of Convolutional layers : {}'.format(
            len(filter(lambda x: isinstance(x, Conv2DLayer) | isinstance(x, Deconv2DLayer), layer_list)))
        print 'Number of parameters : {}'.format(np.sum(map(np.size, get_all_param_values(self.output_layer))))
        print('-' * 75)
Пример #8
0
    def insert_weights(self, regr):
        '''
        In order the following operations are done:
         - Update mask main part: activate another node
         - Copy the 'new_node' weights in the main part of the net
         - Copy the regr weights in the 'new_node' part
         - Recompile the net

        Structure of parameters:
         - W1: (num_classes*num_filters1*num_nodes, num_inputs, filter_length1)
         - b1: (num_classes*num_filters1*num_nodes, )
         - W2: (num_classes, num_classes*num_filters1*num_nodes, filter_length2)
         - b2: (num_classes,)
        '''

        # ------------------
        # Update mask:
        # ------------------
        self.net.layers_['mask'].add_node()
        actNode = self.net.layers_['mask'].active_nodes
        self.active_nodes = actNode

        # ------------------
        # Get weights:
        # ------------------
        W1, b1, maskParam, W2, b2 = layers.get_all_param_values(self.net.layers_['conv2'])
        newNode_W1, newNode_b1, newNode_W2, newNode_b2 = layers.get_all_param_values(self.net.layers_['conv2_newNode'])
        reg_W1, reg_b1, reg_W2, reg_b2 = layers.get_all_param_values(regr.net.layers_['conv2'])
        # boost_const = self.net.layers_['boosting_merge'].boosting_constant.get_value()

        # --------------------
        # Update main part:
        # --------------------
        if actNode>0:
            nNodes = self.num_filters1 ### ReLU MOD
            start = nNodes*(actNode-1)
            stop = nNodes*actNode
            slice_weights = slice(start,stop)
            W1[slice_weights,:,:], b1[slice_weights] = newNode_W1, newNode_b1
            # For the moment I don't touch b2... Not sure about this...
            W2[:,slice_weights,:], b2 = newNode_W2, b2+newNode_b2
            layers.set_all_param_values(self.net.layers_['conv2'], [W1, b1, maskParam, W2, b2])
        # --------------------
        # Insert new node:
        # --------------------
        newNode_W1, newNode_b1, newNode_W2, newNode_b2 = reg_W1, reg_b1, reg_W2, reg_b2
        layers.set_all_param_values(self.net.layers_['conv2_newNode'], [newNode_W1, newNode_b1, newNode_W2, newNode_b2])
Пример #9
0
    def train(data, train_fn, val_fn, network, max_epochs=4000, patience=100):
        (train_words, train_clusters), (test_words, test_clusters) = data
        run = []
        best_model = None
        if patience <= 0:
            patience = max_epochs
        patience_val = 0
        best_val = None

        for epoch in range(max_epochs):
            data_train = sample_data.generate_abnet_batch(
                train_words, train_clusters, epoch, features_getter,
                input_features_getter, return_indexes=False)
            data_val = sample_data.generate_abnet_batch(
                test_words, test_clusters, epoch, features_getter,
                input_features_getter, return_indexes=False)
            start_time = time.time()
            train_err, val_err = abnet2.train_iteration(
                data_train, data_val, train_fn, val_fn)
            if epoch % 20 == 0:
                run.append(layers.get_all_param_values(network))
            if np.isnan(val_err) or np.isnan(train_err):
                print("Train error or validation error is NaN, "
                      "stopping now.")
                break
            # Calculating patience
            if best_val == None or val_err < best_val:
                best_val = val_err
                patience_val = 0
                best_model = layers.get_all_param_values(network)
            else:
                patience_val += 1
                if patience_val > patience:
                    print("No improvements after {} iterations, "
                          "stopping now".format(patience))
                    break

            # Then we print the results for this epoch:
            print("Epoch {} of {} took {:.3f}s".format(
                epoch + 1, max_epochs, time.time() - start_time))
            print("  training loss:\t\t{:.6f}".format(train_err))
            print("  validation loss:\t\t{:.6f}".format(val_err))
            acc = nnet.eer(*data_val)
            print("  score eer:\t\t{:.2f} %".format(acc))
            auc = nnet.auc(*data_val)
            print("  score auc:\t\t{:.2f} %".format(auc))
        return best_model, run
Пример #10
0
 def save_params(self, filename, quiet=False):
     if not quiet:
         print "Saving network weights to " + filename + "..."
     self._prepare_for_save()
     params = get_all_param_values(self.approximator.network)
     pickle.dump(params, open(filename, "wb"))
     if not quiet:
         print "Saving finished."
Пример #11
0
def parameter_analysis(layer):
    all_params = ll.get_all_param_values(layer, regularizable=True)
    for param in all_params:
        print(param.shape)
        nneg_w = np.count_nonzero(param < 0) / np.product(param.shape)
        normed_norm = np.linalg.norm(param) / np.product(param.shape)
        print("Number of negative weights: %0.2f" % nneg_w)
        print("Weight norm (normalized by size): %0.10f" % normed_norm)
Пример #12
0
    def test_get_all_param_values(self):
        from lasagne.layers import (InputLayer, DenseLayer,
                                    get_all_param_values)
        l1 = InputLayer((10, 20))
        l2 = DenseLayer(l1, 30)
        l3 = DenseLayer(l2, 40)

        pvs = get_all_param_values(l3)
        assert len(pvs) == 4
Пример #13
0
 def save(self, filename, quiet=False):
     if not quiet:
         print "Saving qengine to " + filename + "..."
     self._prepare_for_save()
     network_params = get_all_param_values(self._evaluator.network)
     params = [self.setup, network_params]
     pickle.dump(params, open(filename, "wb"))
     if not quiet:
         print "Saving finished."
Пример #14
0
Файл: bidnn.py Проект: v-v/BiDNN
    def save_model(self, epoch=None):
        if epoch is not None:
            fname = self.conf.save_model.replace('%e', str(epoch).zfill(5))
        else:
            fname = self.conf.save_model.replace('%e', 'final')

        if self.conf.verbosity > 1:
            print "Saving model to", fname
        np.savez(fname, *get_all_param_values(self.autoencoder))
Пример #15
0
def save_model(network, params, fname):
    weights = get_all_param_values(network)
    params['input_dim'] = weights[0].shape[0]
    params['output_dim'] = weights[-1].shape[0]
    params = {k: v for k, v in params.iteritems() if k in _standard_config}
    p = _standard_config.copy()
    p.update(params)
    with open(fname, 'wb') as fout:
        pickle.dump((p, weights), fout, -1)
Пример #16
0
    def build_treatment_model(self, n_vars, **kwargs):

        input_vars = TT.matrix()
        instrument_vars = TT.matrix()
        targets = TT.vector()

        inputs = layers.InputLayer((None, n_vars), input_vars)
        inputs = layers.DropoutLayer(inputs, p=0.2)

        dense_layer = layers.DenseLayer(inputs, 2 * kwargs['dense_size'], nonlinearity=nonlinearities.rectify)
        dense_layer = layers.batch_norm(dense_layer)
        dense_layer= layers.DropoutLayer(dense_layer, p=0.2)

        for _ in xrange(kwargs['n_dense_layers'] - 1):
            dense_layer = layers.DenseLayer(dense_layer, kwargs['dense_size'], nonlinearity=nonlinearities.rectify)
            dense_layer = layers.batch_norm(dense_layer)

        self.treatment_output = layers.DenseLayer(dense_layer, 1, nonlinearity=nonlinearities.linear)
        init_params = layers.get_all_param_values(self.treatment_output)

        prediction = layers.get_output(self.treatment_output, deterministic=False)
        test_prediction = layers.get_output(self.treatment_output, deterministic=True)

        l2_cost = regularization.regularize_network_params(self.treatment_output, regularization.l2)
        loss = gmm_loss(prediction, targets, instrument_vars) + 1e-4 * l2_cost

        params = layers.get_all_params(self.treatment_output, trainable=True)
        param_updates = updates.adadelta(loss, params)

        self._train_fn = theano.function(
            [
                input_vars,
                targets,
                instrument_vars,
            ],
            loss,
            updates=param_updates
        )

        self._loss_fn = theano.function(
            [
                input_vars,
                targets,
                instrument_vars,
            ],
            loss,
        )

        self._output_fn = theano.function(
            [
                input_vars,
            ],
            test_prediction,
        )

        return init_params
Пример #17
0
    def insert_weights(self, boostedPerceptron):
        '''
        In order the following operations are done:
         - Update mask main part: activate another perceptron
         - Copy the boostedPerceptron weights in the greedyLayer

        Structure of parameters: (check lasagne doc)
         - W1: (num_classes*num_filters1*num_nodes, num_inputs, filter_length1)
         - b1: (num_classes*num_filters1*num_nodes, )
         - W2: (num_classes, num_classes*num_filters1*num_nodes, filter_length2)
         - b2: (num_classes,)
        '''

        # ------------------
        # Update mask:
        # ------------------
        self.net.layers_['mask'].add_perceptron()
        self.active_perceptrons = self.net.layers_['mask'].active_perceptrons

        # ------------------
        # Get weights:
        # ------------------
        all_net_params = layers.get_all_param_values(self.net.layers_['greedyConv_2'])
        W1, b1, maskParam, W2, b2 = all_net_params[-5:]
        perc_W1, perc_b1, perc_W2, perc_b2 = layers.get_all_param_values(boostedPerceptron.net.layers_['greedyConv_2'])[-4:]

        # --------------------
        # Update main part:
        # --------------------
        start = self.nodes_partition[self.active_perceptrons-1]
        stop = self.nodes_partition[self.active_perceptrons]
        slice_weights = slice(start,stop)
        # !!! For the moment I don't touch b2... !!! #
        b1[slice_weights] = perc_b1
        if self.layer_type=="conv":
            W1[slice_weights,:,:] = perc_W1
            W2[:,slice_weights,:] = perc_W2
        if self.layer_type=="trans_conv":
            W1[:,slice_weights,:] = perc_W1
            W2[slice_weights,:,:] = perc_W2
        layers.set_all_param_values(self.net.layers_['greedyConv_2'], all_net_params[:-5] + [W1, b1, maskParam, W2, b2])
Пример #18
0
    def build_instrument_model(self, n_vars, **kwargs):

        targets = TT.vector()
        instrument_vars = TT.matrix()

        instruments = layers.InputLayer((None, n_vars), instrument_vars)
        instruments = layers.DropoutLayer(instruments, p=0.2)

        dense_layer = layers.DenseLayer(instruments, kwargs['dense_size'], nonlinearity=nonlinearities.tanh)
        dense_layer = layers.DropoutLayer(dense_layer, p=0.2)

        for _ in xrange(kwargs['n_dense_layers'] - 1):
            dense_layer = layers.DenseLayer(dense_layer, kwargs['dense_size'], nonlinearity=nonlinearities.tanh)
            dense_layer = layers.DropoutLayer(dense_layer, p=0.5)

        self.instrument_output = layers.DenseLayer(dense_layer, 1, nonlinearity=nonlinearities.linear)
        init_params = layers.get_all_param_values(self.instrument_output)
        prediction = layers.get_output(self.instrument_output, deterministic=False)
        test_prediction = layers.get_output(self.instrument_output, deterministic=True)

        # flexible here, endog variable can be categorical, continuous, etc.
        l2_cost = regularization.regularize_network_params(self.instrument_output, regularization.l2)
        loss = objectives.squared_error(prediction.flatten(), targets.flatten()).mean() + 1e-4 * l2_cost
        loss_total = objectives.squared_error(prediction.flatten(), targets.flatten()).mean()

        params = layers.get_all_params(self.instrument_output, trainable=True)
        param_updates = updates.adadelta(loss, params)

        self._instrument_train_fn = theano.function(
            [
                targets,
                instrument_vars,
            ],
            loss,
            updates=param_updates
        )

        self._instrument_loss_fn = theano.function(
            [
                targets,
                instrument_vars,
            ],
            loss_total
        )

        self._instrument_output_fn = theano.function([instrument_vars], test_prediction)

        return init_params
Пример #19
0
 def save(self, prefix):
     import json
     # save weights
     np.savez(prefix + "_weights.npz", *get_all_param_values(self.output))
     # save network config params
     with open(prefix + "_config.json", "w") as f:
         f.write(json.dumps(
             {"emb_dim": self.emb_dim,
              "rnn_dim": self.rnn_dim,
              "hid_dim": self.hid_dim,
              "vocab_size": self.vocab_size,
              "context": self.context,
              "cell": self.cell,
              "add_dense": self.add_dense,
              "depth": self.depth,
              "cell_args": self.cell_args}))
Пример #20
0
def print_weight_distribution(net, layer_name=None):
    n_layers = len(net.layers)
    layers_names = [net.layers[i][1]['name'] for i in range(1,n_layers)]
    mean, std, weights = {}, {}, {}
    for name in layers_names:
        if "conv" in name:
            layer = net.layers_[name]
            W, _ = get_all_param_values(layer)[-2:]
            mean[name], std[name], weights[name] = W.mean(), W.std(), W

    if layer_name:
        # print "Mean: %g; \tstd: %g" %(mean[layer_name], std[layer_name])
        return mean[layer_name],  std[layer_name]
    else:
        for name in mean:
            print "Layer %s: \tMean: %g; \tstd: %g" %(name, mean[name], std[name])
Пример #21
0
def per_driver_train_predict(options):
    """ Predict output probabilities for each driver.
        If `options.train` is true, this trains a model"""
    # TODO: support for predict only
    # TODO: support for pretrained weights
    print("Loading data...")
    dataset = load_all(options)
    all_outputs = deque([])
    for driver_index in range(len(dataset['label_map'])):
        driver_id = dataset['label_map'][driver_index]
        print('Working on Driver {0}'.format(driver_id))
        net = _train_single(driver_index, dataset, options)
        utils.save_model(model=get_all_param_values(net), options=options, driver_id=driver_id)
        print('Training complete for driver {0}, making predictions...'.format(driver_id))
        outputs = _predict_single(net, driver_id, options)
        utils.save_outputs(outputs, options, driver_id=driver_id)
        all_outputs.extend(outputs)
    utils.save_outputs(all_outputs, options)
    return
Пример #22
0
def convert(dataset_name):
    dataset = Dataset(dataset_name)

    # Create theano graph
    input_var = T.tensor4('input')
    net = build_model(input_var)

    # Load caffe model
    net_caffe = caffe.Net(dataset.model_path, dataset.pretrained_path, caffe.TEST)

    # Set the parameters from caffe into lasagne
    load_caffe_model(net, net_caffe)

    # Save the parameters
    p = join(dirname(__file__), 'pretrained', dataset.model_name + '.pkl')
    output = open(p, 'wb')
    params = get_all_param_values(net['prob'])
    pickle.dump(params, output)
    output.close()
Пример #23
0
def reinitiate_set_params(network,
                          weights = None):
        # change weights of a trained network to a random set or a user defined value
        # useful in case of big networks and cross validation
        # instead of the long time of recompiling you can just
        # re-init the network weights
        if not weights:
            old = get_all_param_values(network)
            weights = []
            for layer in old:
                shape = layer.shape
                if len(shape)<2:
                    shape = (shape[0], 1)
                W= GlorotUniform()(shape)
                if W.shape != layer.shape:
                    W = np.squeeze(W, axis= 1)
                weights.append(W)
        set_all_param_values(network, weights)
        return network
Пример #24
0
def save_model(network, epoch, model_name, learning_rate = 0.0, directory = 'models'):
	""" Saves networks parameters, epoch, learning_rate
	"""
	params = layers.get_all_param_values(network)
	file_name = model_name + "-ep" + str(epoch) + ".pickle"
	file_path = directory + '/' + file_name
	print "==> Saving model to %s" % file_path
	
	if (not os.path.exists(directory)):
		os.makedirs(directory)
	
	with open(file_path, 'w') as save_file:
		pickle.dump(
			obj = {
				'params' : params,
				'epoch' : epoch,
				'learning_rate' : learning_rate,
			},
			file = save_file,
			protocol = -1
		)
Пример #25
0
def test_batch_size():
    input_var01, input_var16 = T.tensor3s('input01', 'input16')
    l_output01 = model(input_var01, batch_size=1)
    l_output16 = model(input_var16, batch_size=16)

    # Share the parameters for both models
    params01 = get_all_param_values(l_output01)
    set_all_param_values(l_output16, params01)

    posterior_fn01 = theano.function([input_var01], get_output(l_output01))
    posterior_fn16 = theano.function([input_var16], get_output(l_output16))

    example_input = np.random.rand(16, 30, 8)
    example_output16 = posterior_fn16(example_input)
    example_output01 = np.zeros_like(example_output16)

    for i in range(16):
        example_output01[i] = posterior_fn01(example_input[i][np.newaxis, :, :])

    assert example_output16.shape == (16, 30, 8)
    assert np.allclose(example_output16, example_output01, atol=1e-3)
Пример #26
0
    def __init__(self, rc):
        # steal stuff from world/initialize
        self.rc = rc
        self.world = mj.MJCWorld(rc['model_file'])
        self.model = self.world.get_model()
        self.dX = self.model['nq'] + self.model['nv']
        self.dU = self.model['nu']

        # compute dO
        # TODO: put this somewhere else, reorganize observation module
        dO = 0
        ndims = np.sum(rc['obs_dims'])
        fields = rc['obs_fields']
        if 'qpos' in fields:
            dO += self.model['nq']
        if 'qvel' in fields:
            dO += self.model['nv']
        if 'xipos' in fields:
            dO += ndims*(self.model['nbody'] - 1)
        if 'ximat' in fields:
            dO += ndims*ndims*(self.model['nbody'] - 1)
        if 'site_xpos' in fields:
            dO += ndims*self.model['nsite']
        if 'to_target' in fields:
            dO += ndims
        self.dO = dO

        # TODO: start with synthetic data included/reorganize buffer storage
        self.buf = ReplayBuffer(self.dO, self.dU)

        # create nets and copy train net to target net
        self.net = ActorCriticNet(self.dO, self.dU, rc['num_units'], rc['ctrl_limits'])
        self.target_net = ActorCriticNet(self.dO, self.dU, rc['num_units'], rc['ctrl_limits'])
        values = ll.get_all_param_values(self.net.critic)
        ll.set_all_param_values(self.target_net.critic, values)

        # compile all the theano functions
        self._compile()
Пример #27
0
def train_model(data_logs, runtime_configuration):

    print("********************************************************")
    print("Setting up inputs & targets. This could take a while ...")
    print("")
    packaged_data = set_inputs_n_targets(data_logs, runtime_configuration)

    neural_net = conv_net_X(runtime_configuration,\
                 num_output_units=len(packaged_data['class_labels']))
    print("********************************************************")
    print("Now training ...")
    tick = time.time()
    try:
        train_using(packaged_data['train_with'], packaged_data['val_with'],\
                     neural_net, data_logs, runtime_configuration)
        print('Finished training without interruption ...')
    except KeyboardInterrupt:
        print('Terminating ...')
    tock = time.time()

    saved_to = os.path.abspath(data_logs['record_stats_location'])
    save_it(model=get_all_param_values(neural_net), data_logs=data_logs,\
                                    runtime_configuration=runtime_configuration)


    mins, secs = divmod(int(tock-tick), 60)
    hrs, mins = divmod(mins, 60)

    print('===============================')
    print('   Network\'s "state" saved to '
              ' "{0}".\n'
          '===============================\n'
          'Training time: {1[0]:02d} hrs, {1[1]:02d} mins, {1[2]:02d} secs  \n'
     .format(saved_to, (hrs,mins,secs)))


    return neural_net
Пример #28
0
    def learn(self, render_training=False, render_test=False, learning_steps_per_epoch=10000, \
              test_episodes_per_epoch=1, epochs=200, max_test_steps=2000):

        print "Starting the training!"

        train_results = []
        test_results = []

        time_start = time()
        for epoch in range(epochs):
            print "\nEpoch %d\n-------" % (epoch + 1)
            eps = self.exploration_rate(epoch + 1, epochs)
            print "Eps = %.2f" % eps
            train_episodes_finished = 0
            train_scores = []

            print "Training..."
            s1 = env.reset()
            s1 = self.preprocess(s1)
            score = 0
            for learning_step in trange(learning_steps_per_epoch):
                s2, reward, isterminal = self.perform_learning_step(
                    epoch, epochs, s1)
                '''
                a = self.get_best_action(s1)
                (s2, reward, isterminal, _) = env.step(a)  # TODO: Check a
                s2 = self.preprocess(s2) if not isterminal else None
                '''
                score += reward
                s1 = s2
                if (render_training):
                    env.render()
                if isterminal:
                    train_scores.append(score)
                    s1 = env.reset()
                    s1 = self.preprocess(s1)
                    train_episodes_finished += 1
                    score = 0

            print "%d training episodes played." % train_episodes_finished

            train_scores = np.array(train_scores)

            print "Results: mean: %.1f±%.1f," % (train_scores.mean(), train_scores.std()), \
                "min: %.1f," % train_scores.min(), "max: %.1f," % train_scores.max()

            train_results.append((train_scores.mean(), train_scores.std()))

            print("Saving training results...")
            with open("train_results.txt", "w") as train_result_file:
                train_result_file.write(str(train_results))

            print "\nTesting..."
            test_scores = []
            for test_episode in trange(test_episodes_per_epoch):
                s1 = env.reset()
                s1 = self.preprocess(s1)
                score = 0
                isterminal = False
                frame = 0
                while not isterminal and frame < max_test_steps:
                    a = self.get_best_action(s1)
                    (s2, reward, isterminal, _) = env.step(a)  # TODO: Check a
                    s2 = self.preprocess(s2) if not isterminal else None
                    score += reward
                    s1 = s2
                    if (render_test):
                        env.render()
                    frame += 1
                test_scores.append(score)

            test_scores = np.array(test_scores)

            print "Results: mean: %.1f±%.1f," % (test_scores.mean(
            ), test_scores.std()), "min: %.1f" % test_scores.min(
            ), "max: %.1f" % test_scores.max()

            test_results.append((test_scores.mean(), test_scores.std()))

            print("Saving test results...")
            with open("test_results.txt", "w") as test_result_file:
                test_result_file.write(str(test_results))

            print "Saving the network weigths..."
            pickle.dump(get_all_param_values(self.dqn),
                        open('weights.dump', "w"))

            print "Total elapsed time: %.2f minutes" % (
                (time() - time_start) / 60.0)

        env.render(close=True)
        print "======================================"
        print "Training finished. It's time to watch!"
Пример #29
0
 def save_model(self, save_path):
     data = L.get_all_param_values([self.e_net, self.q_net])
     with open(save_path, 'w') as f:
         pkl.dump(data, f)
Пример #30
0
def train_loop(output_layer,
               iter_funcs,
               dataset,
               batch_size,
               max_epochs,
               patience=100,
               learning_rate_start=theano.shared(float32(0.03)),
               learning_rate_stop=theano.shared(float32(0.001)),
               momentum_start=theano.shared(float32(0.9)),
               momentum_stop=theano.shared(float32(0.999)),
               verbose=True):
    best_valid_loss = np.inf
    best_valid_epoch = 0
    best_train_loss = np.inf
    best_weights = None
    learning_rates = np.logspace(
        np.log10(learning_rate_start.get_value()),
        np.log10(learning_rate_stop.get_value()),
        max_epochs)
    momentums = np.linspace(
        momentum_start.get_value(), momentum_stop.get_value(), max_epochs)

    now = time.time()
    history = []
    if verbose:
        printer = ProgressPrinter(color=True)
    try:
        for epoch in train(iter_funcs, dataset,
                           batch_size=batch_size):
            epoch_number = epoch['number']
            train_loss = epoch['train_loss']
            valid_loss = epoch['valid_loss']
            valid_acc = epoch['valid_accuracy']
            info = OrderedDict([
                ('epoch', epoch_number),
                ('train_loss', train_loss),
                ('train_loss_best', train_loss <= best_train_loss),
                ('train_loss_worse', train_loss > history[-1]['train_loss']
                 if len(history) > 0 else False),
                ('valid_loss', valid_loss),
                ('valid_loss_best', valid_loss <= best_valid_loss),
                ('valid_loss_worse', valid_loss > history[-1]['valid_loss']
                 if len(history) > 0 else False),
                ('valid_accuracy', valid_acc),
                ('duration', time.time() - now)])
            history.append(info)
            now = time.time()
            if verbose:
                printer(history)

            # early stopping
            if epoch['valid_loss'] < best_valid_loss:
                best_valid_loss = valid_loss
                best_valid_epoch = epoch_number
                best_weights = get_all_param_values(output_layer)
            elif epoch['number'] >= max_epochs:
                break
            elif best_valid_epoch + patience < epoch_number:
                if verbose:
                    print("  stopping early")
                    print("  best validation loss was {:.6f} at epoch {}."
                          .format(best_valid_loss, best_valid_epoch))
                break
            if epoch['number'] >= max_epochs:
                if verbose:
                    print('  last epoch')
                    print('  best validation loss was {:.6f} at epoch {}.'
                          .format(best_valid_loss, best_valid_epoch))
                break

            # adjust learning rate and momentum
            new_learning_rate = float32(learning_rates[epoch_number-1])
            learning_rate_start.set_value(new_learning_rate)
            new_momentum = float32(momentums[epoch_number-1])
            momentum_start.set_value(new_momentum)
    except KeyboardInterrupt:
        pass
    return best_valid_loss, best_valid_epoch, best_weights, history
Пример #31
0
	def get_model_parameters(self, layer='output'):
		"""return all the parameters of the network"""

		return layers.get_all_param_values(self.network[layer])
Пример #32
0
 def weights(self):
     return layers.get_all_param_values(self.outputs)
Пример #33
0
            best_action_index = get_best_action(state)

            game.make_action(actions[best_action_index], skiprate + 1)
        r = game.get_total_reward()
        test_rewards.append(r)

    test_end = time()
    test_time = test_end - test_start
    print "Test results:"
    test_rewards = np.array(test_rewards)
    print "mean:", test_rewards.mean(), "std:", test_rewards.std(), "max:", test_rewards.max(), "min:", test_rewards.min()
    print "t:", str(round(test_time, 2)) + "s"

    if params_savefile:
        print "Saving network weigths to:", params_savefile
        pickle.dump(get_all_param_values(net), open(params_savefile, "w"))
    print "========================="

print "Training finished! Time to watch!"

game.close()
game.set_window_visible(True)
game.set_mode(Mode.ASYNC_PLAYER)
game.init()

# Sleeping time between episodes, for convenience.
episode_sleep = 0.0

for i in range(episodes_to_watch):
    game.new_episode()
    while not game.is_episode_finished():
Пример #34
0
    print(('[Epoch %03i][trn] cost %9.6f (cla %6.4f, reg %6.4f), |grad| = %.06f, acc = %7.5f %% (%.2fsec)') %
                 (it_count, epoch_cost[0], epoch_cost[1], epoch_cost[2], epoch_cost[3], epoch_cost[4] * 100,
                  time.time() - tic))
    if np.isnan(epoch_cost[0]):
        print("NaN in the loss function...let's stop here")
        break
    if (it_count % eval_freq) == 0:
        v_c, v_a = [], []
        for x_ in ds.test_iter():
            tmp = funcs['acc_loss'](*x_)
            v_a.append(tmp[0])
            v_c.append(tmp[1])
        test_cost = [np.mean(v_c), np.mean(v_a)]
        print(('           [tst] cost %9.6f, acc = %7.5f %%') % (test_cost[0], test_cost[1] * 100))
        if epoch_cost[0] < best_trn:
            kvs.store('best_train_params', [it_count, LL.get_all_param_values(ffn)])
            best_trn = epoch_cost[0]
        if test_cost[0] < best_tst:
            kvs.store('best_test_params', [it_count, LL.get_all_param_values(ffn)])
            best_tst = test_cost[0];\
print("...done training %f" % (time.time() - start_time))

rewrite = True

out_path = '../output/'
print "Saving output to: %s" % out_path

if not os.path.isdir(out_path) or rewrite==True:
    try:
        os.makedirs(out_path)
    except:
Пример #35
0
    def train(self, dataset, save_name='Best_model', num_epochs=100, batch_size=1, LR_start=1e-4, LR_decay=1,
              compute_confusion=False, justTest=False, debug=False, roundParams=False,
              withNoise=False, noiseType='white',ratio_dB=0, logger=logger_RNNtools):

        X_train, y_train, valid_frames_train, X_val, y_val, valid_frames_val, X_test, y_test, valid_frames_test = dataset

        confusion_matrices = []

        # try to load performance metrics of stored model
        best_val_acc, test_acc, old_train_info = self.loadPreviousResults(save_name) #stores old_train_info into self.network_train_info

        logger.info("Initial best Val acc: %s", best_val_acc)
        logger.info("Initial best test acc: %s\n", test_acc)
        self.best_val_acc = best_val_acc

        logger.info("Pass over Test Set")
        test_cost, test_acc, test_topk_acc = self.run_epoch(X=X_test, y=y_test,
                                                                      valid_frames=valid_frames_test)
        logger.info("Test cost:\t\t{:.6f} ".format(test_cost))
        logger.info("Test accuracy:\t\t{:.6f} %".format(test_acc))
        logger.info("Test Top 3 accuracy:\t{:.6f} %".format(test_topk_acc))

        self.network_train_info['nb_params'] = lasagne.layers.count_params(self.network_lout_batch)
        if justTest:
            if os.path.exists(save_name+".npz"):
                self.saveFinalResults(logger, noiseType, ratio_dB, roundParams, save_name, test_acc, test_cost,
                                      test_topk_acc, withNoise)
                return 0
            # else do nothing and train anyway
        else:
            self.network_train_info['test_cost'].append(test_cost)
            self.network_train_info['test_acc'].append(test_acc)
            self.network_train_info['test_topk_acc'].append(test_topk_acc)

        logger.info("\n* Starting training...")
        LR = LR_start
        self.best_cost = 100
        for epoch in range(num_epochs):
            self.curr_epoch += 1
            epoch_time = time.time()
            logger.info("\n\nCURRENT EPOCH: %s", self.curr_epoch)


            logger.info("Pass over Training Set")
            train_cost, train_acc, train_topk_acc =     self.run_epoch(X=X_train, y=y_train, valid_frames=valid_frames_train, LR=LR)

            logger.info("Pass over Validation Set")
            val_cost, val_acc, val_topk_acc =    self.run_epoch(X=X_val, y = y_val, valid_frames=valid_frames_val)


            # Print epoch summary
            logger.info("Epoch {} of {} took {:.3f}s.".format(
                    epoch + 1, num_epochs, time.time() - epoch_time))
            logger.info("Learning Rate:\t\t{:.6f} %".format(LR))
            logger.info("Training cost:\t{:.6f}".format(train_cost))
            logger.info("Validation Top 3 accuracy:\t{:.6f} %".format(val_topk_acc))

            logger.info("Validation cost:\t{:.6f} ".format(val_cost))
            logger.info("Validation accuracy:\t\t{:.6f} %".format(val_acc))
            logger.info("Validation Top 3 accuracy:\t{:.6f} %".format(val_topk_acc))


            # better model, so save parameters
            if val_acc > self.best_val_acc:
                # only reset if significant improvement
                if val_acc - self.best_val_acc > 0.2:
                    self.epochsNotImproved = 0
                # store new parameters
                self.best_cost = val_cost
                self.best_val_acc = val_acc
                self.best_epoch = self.curr_epoch
                self.best_param = L.get_all_param_values(self.network_lout)
                self.best_updates = [p.get_value() for p in self.updates.keys()]
                logger.info("New best model found!")
                if save_name is not None:
                    logger.info("Model saved as " + save_name)
                    self.save_model(save_name)

                logger.info("Pass over Test Set")
                test_cost, test_acc, test_topk_acc = self.run_epoch(X=X_test, y=y_test,
                                                                              valid_frames=valid_frames_test)
                logger.info("Test cost:\t\t{:.6f} ".format(test_cost))
                logger.info("Test accuracy:\t\t{:.6f} %".format(test_acc))
                logger.info("Test Top 3 accuracy:\t{:.6f} %".format(test_topk_acc))

            # save the training info
            self.network_train_info['train_cost'].append(train_cost)
            self.network_train_info['val_cost'].append(val_cost)
            self.network_train_info['val_acc'].append(val_acc)
            self.network_train_info['val_topk_acc'].append(val_topk_acc)
            self.network_train_info['test_cost'].append(test_cost)
            self.network_train_info['test_acc'].append(test_acc)
            self.network_train_info['test_topk_acc'].append(test_topk_acc)

            saveToPkl(save_name + '_trainInfo.pkl', self.network_train_info)
            logger.info("Train info written to:\t %s", save_name + '_trainInfo.pkl')

            if compute_confusion:
                confusion_matrices.append(self.create_confusion(X_val, y_val)[0])
                logger.info('  Confusion matrix computed')
                with open(save_name + '_conf.pkl', 'wb') as cPickle_file:
                    cPickle.dump(
                            [confusion_matrices],
                            cPickle_file,
                            protocol=cPickle.HIGHEST_PROTOCOL)

            # update LR, see if we can stop training
            LR = self.updateLR(LR, LR_decay, logger=logger_RNNtools)

            if self.epochsNotImproved >= 3:
                logging.warning("\n\nNo more improvements, stopping training...")
                logger.info("Pass over Test Set")
                test_cost, test_acc, test_topk_acc = self.run_epoch(X=X_test, y=y_test,
                                                                              valid_frames=valid_frames_test)
                logger.info("Test cost:\t\t{:.6f} ".format(test_cost))
                logger.info("Test accuracy:\t\t{:.6f} %".format(test_acc))
                logger.info("Test Top 3 accuracy:\t{:.6f} %".format(test_topk_acc))

                self.network_train_info['test_cost'][-1]=test_cost
                self.network_train_info['test_acc'][-1] = test_acc
                self.network_train_info['test_topk_acc'][-1] = test_topk_acc

                self.saveFinalResults(logger, noiseType, ratio_dB, roundParams, save_name, test_acc, test_cost,
                                      test_topk_acc, withNoise)
                break
Пример #36
0
	"datatype: {}".format(Recurrent_output_value.shape, type(Recurrent_output_value)))

print("network output"
	"Shape: {}"
	"datatype: {}".format(network_output_value.shape, type(network_output_value)))

print("Pointwise Cost: {}"
	"Cost: {}".format(cost_values_pointwise.shape, cost_value))

cost_vector = []
for epoch in range(NUM_EPOCHS):	
	#pdb.set_trace()
	shuffle_order = np.random.permutation(x.shape[0])
	x = x[shuffle_order, :]
	y = y[shuffle_order, :]
	y_merged = y.reshape([-1])
	mask = mask[shuffle_order, :]
	mask_merged = mask.reshape([-1])


	cost = train(x,y_merged,mask,mask_merged)
	print("Epoch: {}"
		"\tcost = {}".format(epoch,cost) )

	cost_vector.append(cost)
	if epoch % 10 == 0:
		np.savez('CLM_model.npz', *get_all_param_values(l_dense, trainable=True))

# plt.plot(np.arange(NUM_EPOCHS),cost_vector)
# plt.show()
Пример #37
0
 def save_all_params(self, agent, key=None):
     """saves agent params into the database under given name. overwrites by default"""
     key = key or self.default_params_key
     all_params = get_all_param_values(
         list(agent.agent_states) + agent.policy + agent.action_layers)
     self.redis.set(key, self.dumps(all_params))
Пример #38
0
def save_model(filename, model):
	save(filename, LL.get_all_param_values(model))
Пример #39
0
    grad, params, learning_rate=0.05
)  #u can change learning rate, 0.05 was being used in tutorial
f_train = t.function([x_sym, y_sym], [loss, acc], updates=updates)
f_predict = t.function([x_sym], pred)
batch_size = 100  #u can change batch size too according to ur number of images
max_epoch = 5  #u can change this number too,it is number of cycles
n_batches = len(
    x_train
) // batch_size  #try to make this value integer otherwise the remaining images won't be trained
train_batches = batch_gen(x_train, y_train, batch_size)
for epoch in range(max_epoch):
    train_loss = 0
    train_acc = 0
    for _ in range(n_batches):
        x, y = next(train_batches)
        loss, acc = f_train(x, y)
        train_loss += loss
        train_acc += acc
    train_loss /= n_batches
    train_acc /= n_batches

    print(epoch, train_loss, train_acc)
    np.savez(
        'c:/users/Microsoft/desktop/trained_parameters' + str(epoch) + '.npz',
        *L.get_all_param_values(l_output))

#np.savez('c:/users/Microsoft/desktop/trained_parameters.npz', *L.get_all_param_values(l_output)) #this will save trained parameters in .npz file to use for testing
#f = open('c:/users/microsoft/desktop/trained_parameters1.pkl', 'wb')
#pickle.dump(L.get_all_param_values(l_output), f, protocol=pickle.HIGHEST_PROTOCOL)#this will save trained parameters in .pkl file.u can use either one of the files
#f.close()
Пример #40
0
def train():
    """
    Training model.
    """

    # Compile training and testing functions
    [model, train_fn, val_fn, predict_fn] = get_model()

    # Load training data
    print('Loading training data...')
    X, y = load_train_data()

    #print('Pre-processing images...')
    #X = preprocess(X)

    # split to training and test
    X_train, y_train, X_test, y_test = split_data(X, y, split_ratio=0.2)

    nb_epoch = 200
    batch_size = 32
    calc_crps = 0  # calculate CRPS every n-th iteration (set to 0 if CRPS estimation is not needed) NOT IMPLEMENTED YET

    print('-' * 50)
    print('Training...')
    print('-' * 50)

    min_val_err = sys.float_info.max
    patience = 0
    for i in range(nb_epoch):
        print('-' * 50)
        print('Iteration {0}/{1}'.format(i + 1, nb_epoch))
        print('-' * 50)

        print('Augmenting images - rotations')
        X_train_aug = rotation_augmentation(X_train, 15)
        print('Augmenting images - shifts')
        X_train_aug = shift_augmentation(X_train_aug, 0.1, 0.1)

        # In each epoch, we do a full pass over the training data:
        print('Fitting model...')
        train_err = 0
        train_batches = 0
        for batch in iterate_minibatches(X_train_aug,
                                         y_train,
                                         batch_size,
                                         shuffle=True):
            inputs, targets = batch
            train_err += train_fn(inputs, targets)
            train_batches += 1

        # And a full pass over the validation data:
        val_err = 0
        val_batches = 0
        for batch in iterate_minibatches(X_test,
                                         y_test,
                                         batch_size,
                                         shuffle=False):
            inputs, targets = batch
            val_err += val_fn(inputs, targets)
            val_batches += 1

        print('Saving weights...')
        # save weights so they can be loaded later
        # np.savez('weights.npz', *get_all_param_values(model))

        # for best (lowest) val losses, save weights
        if val_err < min_val_err:
            patience = 0
            min_val_err = val_err
            np.savez('weights_best.npz', *get_all_param_values(model))
        else:
            patience += 1

        print('error on validation set: ' + str(val_err))
        print('patience variable is: ' + str(patience))
        print('\n')

        # save best (lowest) val losses in file (to be later used for generating submission)
        with open('val_loss.txt', mode='a') as f:
            f.write(str(val_err))
            f.write('\n')

        if (patience == 8):
            break