Пример #1
0
def MDCL(incoming, num_filters, scales, name):
    # Total number of layers
    # W = theano.shared(lasagne.utils.floatX(Orthogonal(
    winit = initmethod(0.02)
    sinit = lasagne.init.Constant(1.0 / (1 + len(scales)))
    # Number of incoming channels
    ni = lasagne.layers.get_output_shape(incoming)[1]
    # get weight parameter for this layer
    W = theano.shared(lasagne.utils.floatX(
        winit.sample((num_filters,
                      lasagne.layers.get_output_shape(incoming)[1], 3, 3))),
                      name=name + 'W')
    n = C2D(incoming=incoming,
            num_filters=num_filters,
            filter_size=[3, 3],
            stride=[1, 1],
            pad=(1, 1),
            W=W *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_base').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + 'base')
    # nc = [theano.shared(lasagne.utils.floatX(1.0/(1+len(scales))), name+'coeff_base')]
    nd = []
    for i, scale in enumerate(scales):
        if scale == 0:
            nd.append(
                C2D(incoming=incoming,
                    num_filters=num_filters,
                    filter_size=[1, 1],
                    stride=[1, 1],
                    pad=(0, 0),
                    W=T.mean(W, axis=[2, 3]).dimshuffle(0, 1, 'x', 'x') *
                    theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)),
                        name + '_coeff_1x1').dimshuffle(0, 'x', 'x', 'x'),
                    b=None,
                    nonlinearity=None,
                    name=name + str(scale)))
        else:
            nd.append(
                lasagne.layers.DilatedConv2DLayer(
                    incoming=lasagne.layers.PadLayer(incoming=incoming,
                                                     width=(scale, scale)),
                    num_filters=num_filters,
                    filter_size=[3, 3],
                    dilation=(scale, scale),
                    W=W.dimshuffle(1, 0, 2, 3) * theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)),
                        name + '_coeff_' + str(scale)).dimshuffle(
                            'x', 0, 'x', 'x'),  #.dimshuffle('x',0),
                    b=None,
                    nonlinearity=None,
                    name=name + str(scale)))
    return ESL(nd + [n])
Пример #2
0
def MDBLOCK(incoming, num_filters, scales, name, nonlinearity):
    return NL(
        BN(ESL([
            incoming,
            MDCL(
                NL(
                    BN(MDCL(
                        NL(BN(incoming, name=name + 'bnorm0'), nonlinearity),
                        num_filters, scales, name),
                       name=name + 'bnorm1'), nonlinearity), num_filters,
                scales, name + '2')
        ]),
           name=name + 'bnorm2'), nonlinearity)
def ResDropNoPre(incoming, IB, p):
    return NL(ESL([IfElseDropLayer(IB,survival_p=p),incoming]),elu)     
def ResDrop(incoming, IB, p):
    return ESL([IfElseDropLayer(IB,survival_p=p),incoming])
def ResLayer(incoming, IB):
    return NL(ESL([IB,incoming]),elu)
Пример #6
0
def get_model(interp=False):
    dims, n_channels = tuple(cfg['dims']), cfg['n_channels']
    shape = (None, n_channels) + dims
    l_in = lasagne.layers.InputLayer(shape=shape)
    l_enc_conv1 = C2D(incoming=l_in,
                      num_filters=128,
                      filter_size=[5, 5],
                      stride=[2, 2],
                      pad=(2, 2),
                      W=initmethod(0.02),
                      nonlinearity=lrelu(0.2),
                      name='enc_conv1')
    l_enc_conv2 = BN(C2D(incoming=l_enc_conv1,
                         num_filters=256,
                         filter_size=[5, 5],
                         stride=[2, 2],
                         pad=(2, 2),
                         W=initmethod(0.02),
                         nonlinearity=lrelu(0.2),
                         name='enc_conv2'),
                     name='bnorm2')
    l_enc_conv3 = BN(C2D(incoming=l_enc_conv2,
                         num_filters=512,
                         filter_size=[5, 5],
                         stride=[2, 2],
                         pad=(2, 2),
                         W=initmethod(0.02),
                         nonlinearity=lrelu(0.2),
                         name='enc_conv3'),
                     name='bnorm3')
    l_enc_conv4 = BN(C2D(incoming=l_enc_conv3,
                         num_filters=1024,
                         filter_size=[5, 5],
                         stride=[2, 2],
                         pad=(2, 2),
                         W=initmethod(0.02),
                         nonlinearity=lrelu(0.2),
                         name='enc_conv4'),
                     name='bnorm4')

    print(lasagne.layers.get_output_shape(l_enc_conv4, (196, 3, 64, 64)))
    l_enc_fc1 = BN(DL(incoming=l_enc_conv4,
                      num_units=1000,
                      W=initmethod(0.02),
                      nonlinearity=relu,
                      name='enc_fc1'),
                   name='bnorm_enc_fc1')

    # Define latent values
    l_enc_mu, l_enc_logsigma = [
        BN(DL(incoming=l_enc_fc1,
              num_units=cfg['num_latents'],
              nonlinearity=None,
              name='enc_mu'),
           name='mu_bnorm'),
        BN(DL(incoming=l_enc_fc1,
              num_units=cfg['num_latents'],
              nonlinearity=None,
              name='enc_logsigma'),
           name='ls_bnorm')
    ]
    l_Z_IAF = GaussianSampleLayer(l_enc_mu, l_enc_logsigma, name='l_Z_IAF')
    l_IAF_mu, l_IAF_logsigma = [
        MADE(l_Z_IAF, [cfg['num_latents']], 'l_IAF_mu'),
        MADE(l_Z_IAF, [cfg['num_latents']], 'l_IAF_ls')
    ]
    l_Z = IAFLayer(l_Z_IAF, l_IAF_mu, l_IAF_logsigma, name='l_Z')
    l_dec_fc2 = DL(incoming=l_Z,
                   num_units=512 * 16,
                   nonlinearity=lrelu(0.2),
                   W=initmethod(0.02),
                   name='l_dec_fc2')
    l_unflatten = lasagne.layers.ReshapeLayer(
        incoming=l_dec_fc2,
        shape=([0], 512, 4, 4),
    )
    l_dec_conv1 = DeconvLayer(incoming=l_unflatten,
                              num_filters=512,
                              filter_size=[5, 5],
                              stride=[2, 2],
                              crop=(2, 2),
                              W=initmethod(0.02),
                              nonlinearity=None,
                              name='dec_conv1')
    l_dec_conv2a = MDBLOCK(incoming=l_dec_conv1,
                           num_filters=512,
                           scales=[0, 2],
                           name='dec_conv2a',
                           nonlinearity=lrelu(0.2))
    l_dec_conv2 = DeconvLayer(incoming=l_dec_conv2a,
                              num_filters=256,
                              filter_size=[5, 5],
                              stride=[2, 2],
                              crop=(2, 2),
                              W=initmethod(0.02),
                              nonlinearity=None,
                              name='dec_conv2')
    l_dec_conv3a = MDBLOCK(incoming=l_dec_conv2,
                           num_filters=256,
                           scales=[0, 2, 3],
                           name='dec_conv3a',
                           nonlinearity=lrelu(0.2))
    l_dec_conv3 = DeconvLayer(incoming=l_dec_conv3a,
                              num_filters=128,
                              filter_size=[5, 5],
                              stride=[2, 2],
                              crop=(2, 2),
                              W=initmethod(0.02),
                              nonlinearity=None,
                              name='dec_conv3')
    l_dec_conv4a = MDBLOCK(incoming=l_dec_conv3,
                           num_filters=128,
                           scales=[0, 2, 3],
                           name='dec_conv4a',
                           nonlinearity=lrelu(0.2))
    l_dec_conv4 = BN(DeconvLayer(incoming=l_dec_conv4a,
                                 num_filters=128,
                                 filter_size=[5, 5],
                                 stride=[2, 2],
                                 crop=(2, 2),
                                 W=initmethod(0.02),
                                 nonlinearity=lrelu(0.2),
                                 name='dec_conv4'),
                     name='bnorm_dc4')

    R = NL(MDCL(l_dec_conv4, num_filters=2, scales=[2, 3, 4], name='R'),
           sigmoid)
    G = NL(
        ESL([
            MDCL(l_dec_conv4, num_filters=2, scales=[2, 3, 4], name='G_a'),
            MDCL(R, num_filters=2, scales=[2, 3, 4], name='G_b')
        ]), sigmoid)
    B = NL(
        ESL([
            MDCL(l_dec_conv4, num_filters=2, scales=[2, 3, 4], name='B_a'),
            MDCL(CL([R, G]), num_filters=2, scales=[2, 3, 4], name='B_b')
        ]), sigmoid)
    l_out = CL([
        beta_layer(SL(R, slice(0, 1), 1), SL(R, slice(1, 2), 1)),
        beta_layer(SL(G, slice(0, 1), 1), SL(G, slice(1, 2), 1)),
        beta_layer(SL(B, slice(0, 1), 1), SL(B, slice(1, 2), 1))
    ])

    minibatch_discrim = MinibatchLayer(
        lasagne.layers.GlobalPoolLayer(l_enc_conv4),
        num_kernels=500,
        name='minibatch_discrim')
    l_discrim = DL(incoming=minibatch_discrim,
                   num_units=3,
                   nonlinearity=lasagne.nonlinearities.softmax,
                   b=None,
                   W=initmethod(0.02),
                   name='discrimi')

    return {
        'l_in': l_in,
        'l_out': l_out,
        'l_mu': l_enc_mu,
        'l_ls': l_enc_logsigma,
        'l_Z': l_Z,
        'l_IAF_mu': l_IAF_mu,
        'l_IAF_ls': l_IAF_logsigma,
        'l_Z_IAF': l_Z_IAF,
        'l_introspect': [l_enc_conv1, l_enc_conv2, l_enc_conv3, l_enc_conv4],
        'l_discrim': l_discrim
    }
Пример #7
0
    def __init__(self,
                 z,
                 hidden_sizes,
                 name,
                 nonlinearity=lasagne.nonlinearities.rectify,
                 output_nonlinearity=None,
                 **kwargs):
        # self.rng = rng if rng else RandomStreams(lasagne.random.get_rng().randint(1234))
        super(MADE, self).__init__(z, **kwargs)

        # Incoming latents
        self.z = z

        # List defining hidden units in each layer
        self.hidden_sizes = hidden_sizes

        # Layer name for saving parameters.
        self.name = name

        # nonlinearity
        self.nonlinearity = nonlinearity

        # Output nonlinearity
        self.output_nonlinearity = output_nonlinearity

        # Control parameters from original MADE
        mask_distribution = 0
        use_cond_mask = False
        direct_input_connect = "Output"
        direct_output_connect = False
        self.shuffled_once = False

        # Mask generator
        self.mask_generator = MaskGenerator(
            lasagne.layers.get_output_shape(z)[1], hidden_sizes,
            mask_distribution)

        # Build the MADE
        # TODO: Consider making this more compact by directly writing to the layers list
        self.input_layer = MaskedLayer(incoming=z,
                                       num_units=hidden_sizes[0],
                                       mask_generator=self.mask_generator,
                                       layerIdx=0,
                                       W=lasagne.init.Orthogonal('relu'),
                                       nonlinearity=self.nonlinearity,
                                       name=self.name + '_input')

        self.layers = [self.input_layer]

        for i in range(1, len(hidden_sizes)):

            self.layers += [
                MaskedLayer(incoming=self.layers[-1],
                            num_units=hidden_sizes[i],
                            mask_generator=self.mask_generator,
                            layerIdx=i,
                            W=lasagne.init.Orthogonal('relu'),
                            nonlinearity=self.nonlinearity,
                            name=self.name + '_layer_' + str(i))
            ]

        outputLayerIdx = len(self.layers)

        # Output layer
        self.layers += [
            MaskedLayer(incoming=self.layers[-1],
                        num_units=lasagne.layers.get_output_shape(z)[1],
                        mask_generator=self.mask_generator,
                        layerIdx=outputLayerIdx,
                        W=lasagne.init.Orthogonal('relu'),
                        nonlinearity=self.output_nonlinearity,
                        name=self.name + '_output_W'),
            DIML(incoming=z,
                 num_units=lasagne.layers.get_output_shape(z)[1],
                 mask_generator=self.mask_generator,
                 layerIdx=outputLayerIdx,
                 W=lasagne.init.Orthogonal('relu'),
                 nonlinearity=self.output_nonlinearity,
                 name=self.name + '_output_D')
        ]

        masks_updates = [
            layer_mask_update for l in self.layers
            for layer_mask_update in l.shuffle_update
        ]
        self.update_masks = theano.function(name='update_masks',
                                            inputs=[],
                                            updates=masks_updates)
        # Make the true output layer by ESL'ing the DIML and masked layer
        self.final_layer = ESL([self.layers[-2], self.layers[-1]])
Пример #8
0
def MDCL(incoming, num_filters, scales, name, dnn=True):
    if dnn:
        from lasagne.layers.dnn import Conv2DDNNLayer as C2D
    # W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
    winit = initmethod(0.02)

    # Initialization method for the coefficients
    sinit = lasagne.init.Constant(1.0 / (1 + len(scales)))

    # Number of incoming channels
    ni = lasagne.layers.get_output_shape(incoming)[1]

    # Weight parameter--the primary parameter for this block
    W = theano.shared(lasagne.utils.floatX(
        winit.sample((num_filters,
                      lasagne.layers.get_output_shape(incoming)[1], 3, 3))),
                      name=name + 'W')

    # Primary Convolution Layer--No Dilation
    n = C2D(
        incoming=incoming,
        num_filters=num_filters,
        filter_size=[3, 3],
        stride=[1, 1],
        pad=(1, 1),
        W=W * theano.shared(lasagne.utils.floatX(
            sinit.sample(num_filters)), name + '_coeff_base').dimshuffle(
                0, 'x', 'x', 'x'
            ),  # Note the broadcasting dimshuffle for the num_filter scalars.
        b=None,
        nonlinearity=None,
        name=name + 'base')
    # List of remaining layers. This should probably just all be concatenated into a single list rather than being a separate deal.
    nd = []
    for i, scale in enumerate(scales):

        # I don't think 0 dilation is technically defined (or if it is it's just the regular filter) but I use it here as a convenient keyword to grab the 1x1 mean conv.
        if scale == 0:
            nd.append(
                C2D(incoming=incoming,
                    num_filters=num_filters,
                    filter_size=[1, 1],
                    stride=[1, 1],
                    pad=(0, 0),
                    W=T.mean(W, axis=[2, 3]).dimshuffle(0, 1, 'x', 'x') *
                    theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)),
                        name + '_coeff_1x1').dimshuffle(0, 'x', 'x', 'x'),
                    b=None,
                    nonlinearity=None,
                    name=name + str(scale)))
        # Note the dimshuffles in this layer--these are critical as the current DilatedConv2D implementation uses a backward pass.
        else:
            nd.append(
                lasagne.layers.DilatedConv2DLayer(
                    incoming=lasagne.layers.PadLayer(incoming=incoming,
                                                     width=(scale, scale)),
                    num_filters=num_filters,
                    filter_size=[3, 3],
                    dilation=(scale, scale),
                    W=W.dimshuffle(1, 0, 2, 3) * theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)), name +
                        '_coeff_' + str(scale)).dimshuffle('x', 0, 'x', 'x'),
                    b=None,
                    nonlinearity=None,
                    name=name + str(scale)))
    return ESL(nd + [n])
Пример #9
0
def ResLayer(incoming, IB, nonlinearity):
    return NL(ESL([IB, incoming]), nonlinearity)
Пример #10
0
def DSL(incoming, num_filters, scales, name, dnn=True):
    if dnn:
        from lasagne.layers.dnn import Conv2DDNNLayer as C2D
    # W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
    winit = initmethod(0.02)

    # Initialization method for the coefficients
    sinit = lasagne.init.Constant(1.0 / (1 + len(scales)))

    # Number of incoming channels
    ni = lasagne.layers.get_output_shape(incoming)[1]

    # Weight parameter--the primary parameter for this block
    W = theano.shared(lasagne.utils.floatX(
        winit.sample((num_filters,
                      lasagne.layers.get_output_shape(incoming)[1], 3, 3))),
                      name=name + 'W')

    # Main layer--3x3 conv with stride 2
    n = C2D(incoming=incoming,
            num_filters=num_filters,
            filter_size=[3, 3],
            stride=[2, 2],
            pad=(1, 1),
            W=W *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_base').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + 'base')

    nd = []
    for i, scale in enumerate(scales):

        p = P2D(
            incoming=incoming,
            pool_size=scale,
            stride=2,
            pad=(1, 1) if i else (0, 0),
            mode='average_exc_pad',
        )

        nd.append(
            C2D(
                incoming=p,
                num_filters=num_filters,
                filter_size=[3, 3],
                stride=(1, 1),
                pad=(1, 1),
                W=W *
                theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                              name + '_coeff_' + str(scale)).dimshuffle(
                                  0, 'x', 'x', 'x'),  #.dimshuffle('x',0),
                b=None,
                nonlinearity=None,
                name=name + str(scale)))

    nd.append(
        C2D(incoming=incoming,
            num_filters=num_filters,
            filter_size=[1, 1],
            stride=[2, 2],
            pad=(0, 0),
            W=T.mean(W, axis=[2, 3]).dimshuffle(0, 1, 'x', 'x') *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_1x1').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + '1x1'))

    return ESL(nd + [n])
Пример #11
0
def USL(incoming, num_filters, scales, name, dnn=True):
    if dnn:
        from lasagne.layers.dnn import Conv2DDNNLayer as C2D

    # W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
    winit = initmethod(0.02)

    # Initialization method for the coefficients
    sinit = lasagne.init.Constant(1.0 / (1 + len(scales)))

    # Number of incoming channels
    ni = lasagne.layers.get_output_shape(incoming)[1]

    # Weight parameter--the primary parameter for this block
    W = theano.shared(lasagne.utils.floatX(
        winit.sample((num_filters,
                      lasagne.layers.get_output_shape(incoming)[1], 3, 3))),
                      name=name + 'W')

    # Primary Convolution Layer--No Dilation
    n = C2D(incoming=Upscale2DLayer(incoming, 2),
            num_filters=num_filters,
            filter_size=[3, 3],
            stride=[1, 1],
            pad=(1, 1),
            W=W *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_base').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + 'base')
    # Remaining layers
    nd = []
    for i, scale in enumerate(scales):
        if scale == 0:
            nd.append(
                C2D(incoming=Upscale2DLayer(incoming, 2),
                    num_filters=num_filters,
                    filter_size=[1, 1],
                    stride=[1, 1],
                    pad=(0, 0),
                    W=T.mean(W, axis=[2, 3]).dimshuffle(0, 1, 'x', 'x') *
                    theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)),
                        name + '_coeff_1x1').dimshuffle(0, 'x', 'x', 'x'),
                    b=None,
                    nonlinearity=None,
                    name=name + '1x1'))
        else:
            nd.append(
                lasagne.layers.DilatedConv2DLayer(
                    incoming=lasagne.layers.PadLayer(incoming=Upscale2DLayer(
                        incoming, 2),
                                                     width=(scale, scale)),
                    num_filters=num_filters,
                    filter_size=[3, 3],
                    dilation=(scale, scale),
                    W=W.dimshuffle(1, 0, 2, 3) * theano.shared(
                        lasagne.utils.floatX(sinit.sample(num_filters)), name +
                        '_coeff_' + str(scale)).dimshuffle('x', 0, 'x', 'x'),
                    b=None,
                    nonlinearity=None,
                    name=name + str(scale)))

    # A single deconv layer is also concatenated here. Like I said, it's a prototype!
    nd.append(
        DeconvLayer(
            incoming=incoming,
            num_filters=num_filters,
            filter_size=[3, 3],
            stride=[2, 2],
            crop=(1, 1),
            W=W.dimshuffle(1, 0, 2, 3) *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_deconv').dimshuffle('x', 0, 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + 'deconv'))

    return ESL(nd + [n])
Пример #12
0
def DSL(incoming, num_filters, scales, name):
    # Total number of layers
    # W = theano.shared(lasagne.utils.floatX(Orthogonal(
    winit = initmethod(0.02)
    sinit = lasagne.init.Constant(1.0 / (1 + len(scales)))
    # Number of incoming channels
    ni = lasagne.layers.get_output_shape(incoming)[1]
    # get weight parameter for this layer
    W = theano.shared(lasagne.utils.floatX(
        winit.sample((num_filters,
                      lasagne.layers.get_output_shape(incoming)[1], 3, 3))),
                      name=name + 'W')
    n = C2D(incoming=incoming,
            num_filters=num_filters,
            filter_size=[3, 3],
            stride=[2, 2],
            pad=(1, 1),
            W=W *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_base').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + 'base')

    # nc = [theano.shared(lasagne.utils.floatX(1.0/(1+len(scales))), name+'coeff_base')]
    nd = []
    for i, scale in enumerate(scales):

        p = P2D(
            incoming=incoming,
            pool_size=scale,
            stride=2,
            pad=(1, 1) if i else (0, 0),
            mode='average_exc_pad',
        )

        nd.append(
            C2D(
                incoming=p,
                num_filters=num_filters,
                filter_size=[3, 3],
                stride=(1, 1),
                pad=(1, 1),
                W=W *
                theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                              name + '_coeff_' + str(scale)).dimshuffle(
                                  0, 'x', 'x', 'x'),  #.dimshuffle('x',0),
                b=None,
                nonlinearity=None,
                name=name + str(scale)))

    nd.append(
        C2D(incoming=incoming,
            num_filters=num_filters,
            filter_size=[1, 1],
            stride=[2, 2],
            pad=(0, 0),
            W=T.mean(W, axis=[2, 3]).dimshuffle(0, 1, 'x', 'x') *
            theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)),
                          name + '_coeff_1x1').dimshuffle(0, 'x', 'x', 'x'),
            b=None,
            nonlinearity=None,
            name=name + '1x1'))
    # nc.append()

    return ESL(nd + [n])