Пример #1
0
    def _calc_mean(self, data=None):

        if data is None:
            data = self._data

        if self._min_cov_det:
            lg.details("Use MCD for expectation value estimation")
            mcd = MCD(support_fraction=self._mcd_supp_frac).fit(
                self._data.transpose())
            ydata = mcd.location_
        else:
            ydata = np.mean(data, axis=1)

        return ydata
Пример #2
0
    def _calc_cov(self, data=None):

        if data is None:
            data = self._data
        if self._min_cov_det:
            lg.details("Use MCD for covariance estimation")
            mcd = MCD(support_fraction=self._mcd_supp_frac).fit(
                self._data.transpose())
            cov = mcd.covariance_
        else:
            cov = calc_cov(data)

        if not self._sample_data:
            cov /= self._nconfs  # For fit we have to normalize like an error
        return cov
Пример #3
0
    def _calc_cov_and_mean(self, data=None):

        if data is None:
            data = self._data
        if self._min_cov_det:
            ind = self._xdata < self.xmax()
            mcd = MCD(support_fraction=self._mcd_supp_frac).fit(
                self._data.transpose())
            ydata = mcd.location_
            lg.details("Use MCD for covariance estimation")
            cov = mcd.covariance_
        else:
            ydata = std_mean(self._data, axis=1)
            cov = calc_cov(data)

        if not self._sample_data:
            cov /= self._nconfs  # For fit we have to normalize like an error
        edata = np.sqrt(np.diag(cov))
        return ydata, edata, cov
Пример #4
0
    def corr_fit(self,
                 xmin=-np.inf,
                 xmax=np.inf,
                 start_params=None,
                 nstates=None,
                 nstates_osc=None,
                 correlated=None,
                 priorsigma=None,
                 priorval=None):

        if nstates == 0:
            raise ValueError("Require at least one non-oscillating state")

        if nstates is None:
            nstates = self._nstates
        if nstates_osc is None:
            nstates_osc = self._nstates_osc

        if correlated is None:
            correlated = self._cov_avail

        #To estimate parameters we usually perform a non-correlated fit before the actual
        #correlated fit. This is not neccessary if we already get start parameters.
        #However, for an oscillating fit is is reasonable to perform a non correlated fit
        #in any case. This is because start parameter estimation is usually performed outside
        #for oscillating fits.
        if correlated and start_params is not None:
            if nstates_osc > 0:
                skip_uncorr = False
            else:
                skip_uncorr = True
        else:
            skip_uncorr = False

        try:
            start_params, priorval, priorsigma = self.init_start_params(
                xmin, xmax, start_params, priorval, priorsigma, nstates,
                nstates_osc)
        except Exception as e:
            lg.info("Failed to estimate start parameters. Try direct fit")
            lg.details("Error was", e)
            if lg.isLevel("DEBUG"):
                traceback.print_exc()
            start_params = None

        #Save the states of the last fit. This must be ensured, even if the parameter
        #estimation fails.
        finally:
            self._nstates = nstates
            self._nstates_osc = nstates_osc

        print_res("Start parameters for %d + %d fit" % (nstates, nstates_osc),
                  start_params,
                  level="INFO")

        if not skip_uncorr:
            res, res_err, chi_dof, aicc, pcov = self.simple_corr_fit(
                xmin,
                xmax,
                start_params,
                correlated=False,
                priorval=priorval,
                priorsigma=priorsigma,
                nstates=nstates,
                nstates_osc=nstates_osc)

            start_params = np.copy(res)

            self._change_order(res, res_err, nstates, nstates_osc)
            res, res_err = self.remove_mult_const(res, res_err)
            pcov = self.remove_mult_const_pcov(pcov)

            lg.info()
            print_res("Fit result for uncorrelated %d + %d fit" %
                      (nstates, nstates_osc),
                      res,
                      res_err,
                      chi_dof,
                      level="INFO")

            print_scl("AICc", aicc, level='INFO')

        if correlated:
            if not self._cov_avail:
                raise NotAvailableError("Covariance matrix is not available")

            res, res_err, chi_dof, aicc, pcov = self.simple_corr_fit(
                xmin,
                xmax,
                start_params=start_params,
                correlated=True,
                priorval=priorval,
                priorsigma=priorsigma,
                nstates=nstates,
                nstates_osc=nstates_osc)

            self._change_order(res, res_err, nstates, nstates_osc)
            res, res_err = self.remove_mult_const(res, res_err)
            pcov = self.remove_mult_const_pcov(pcov)

            lg.info()
            print_res("Fit result for correlated %d + %d fit" %
                      (nstates, nstates_osc),
                      res,
                      res_err,
                      chi_dof,
                      level="INFO")

            print_scl("AICc", aicc)

        return res, res_err, chi_dof, aicc, pcov
Пример #5
0
def minimize(func, jack=None, hess=None, start_params=None, tol=1e-12,
             maxiter=10000, use_alg=False, algorithm=None):

    if algorithm == "levenberg":
        args = (start_params, func, jack, hess)
        kwargs = {'eps': tol, 'use_alg': use_alg,
                  'max_itt': maxiter}
        params, nfev = levenberg(*args, **kwargs)

    else:
        args = (func, start_params)

        if algorithm == "BFGS":
            kwargs = {'method': algorithm,
                      'jac': jack,
                      'tol': tol,
                      'options': {'gtol': tol, 'maxiter': maxiter}}

        elif algorithm == "TNC":
            kwargs = {'method': algorithm,
                      'jac': jack,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        elif algorithm == "COBYLA":
            kwargs = {'method': algorithm,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        elif algorithm == "SLSQP":
            kwargs = {'method': algorithm,
                      'jac': jack,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        elif algorithm == "L-BFGS-B":
            kwargs = {'method': algorithm,
                      'jac': jack,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        elif algorithm == "Powell":
            kwargs = {'method': algorithm,
                      'tol': tol,
                      'options': {'xtol': tol, 'ftol': tol,
                                  'maxfev': maxiter}}

        elif algorithm == "Nelder-Mead":
            kwargs = {'method': algorithm,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        else:
            kwargs = {'method': algorithm,
                      'jac': jack,
                      'hess': hess,
                      'tol': tol,
                      'options': {'maxiter': maxiter}}

        # At least COBYLA sometimes get stuck in an endless loop. Use timeout to make
        # sure we finish
        res = timeout(opt.minimize, args=args,
                      kwargs=kwargs, timeout_duration=100)

    if algorithm != "levenberg":
        params = res.x
        nfev = res.nfev
        if not res.success:
            lg.details(algorithm, res.message)
            raise ValueError(algorithm + ": Minimization did not converge!")

    try:
        params[0]
    except Exception:
        if isinstance(params, (np.ndarray, np.generic)):
            # somhow numpy 0D arrays have to be converted to scalar explicitly
            params = [np.asscalar(params)]
        else:
            params = [params]

    return params, nfev