Пример #1
0
def test_4_spins():
    # fmt: off
    matrix = np.array([[1, 0, 0, 0], [0, -1, 2, 0], [0, 2, -1, 0],
                       [0, 0, 0, 1]])
    # fmt: on
    number_spins = 4
    edges = [(i, (i + 1) % number_spins) for i in range(number_spins)]

    basis = ls.SpinBasis(ls.Group([]), number_spins=4, hamming_weight=2)
    basis.build()
    assert basis.number_states == 6
    operator = ls.Operator(basis, [ls.Interaction(matrix, edges)])
    assert np.isclose(ls.diagonalize(operator, k=1)[0], -8)

    basis = ls.SpinBasis(ls.Group([]),
                         number_spins=4,
                         hamming_weight=2,
                         spin_inversion=1)
    basis.build()
    assert basis.number_states == 3
    operator = ls.Operator(basis, [ls.Interaction(matrix, edges)])
    assert np.isclose(ls.diagonalize(operator, k=1)[0], -8)

    T = ls.Symmetry([1, 2, 3, 0], sector=0)
    basis = ls.SpinBasis(ls.Group([T]),
                         number_spins=4,
                         hamming_weight=2,
                         spin_inversion=1)
    basis.build()
    assert basis.number_states == 2
    operator = ls.Operator(basis, [ls.Interaction(matrix, edges)])
    assert np.isclose(ls.diagonalize(operator, k=1)[0], -8)
Пример #2
0
def main():
    number_spins = 10  # System size
    hamming_weight = number_spins // 2  # Hamming weight (i.e. number of spin ups)

    # Constructing symmetries
    symmetries = []
    sites = np.arange(number_spins)
    # Momentum in x direction with eigenvalue π
    T = (sites + 1) % number_spins
    symmetries.append(ls.Symmetry(T, sector=number_spins // 2))
    # Parity with eigenvalue π
    P = sites[::-1]
    symmetries.append(ls.Symmetry(P, sector=1))

    # Constructing the group
    symmetry_group = ls.Group(symmetries)
    print("Symmetry group contains {} elements".format(len(symmetry_group)))

    # Constructing the basis
    basis = ls.SpinBasis(
        symmetry_group, number_spins=number_spins, hamming_weight=hamming_weight, spin_inversion=-1
    )
    basis.build()  # Build the list of representatives, we need it since we're doing ED
    print("Hilbert space dimension is {}".format(basis.number_states))

    # Heisenberg Hamiltonian
    # fmt: off
    σ_x = np.array([ [0, 1]
                   , [1, 0] ])
    σ_y = np.array([ [0 , -1j]
                   , [1j,   0] ])
    σ_z = np.array([ [1,  0]
                   , [0, -1] ])
    # fmt: on
    σ_p = σ_x + 1j * σ_y
    σ_m = σ_x - 1j * σ_y

    matrix = 0.5 * (np.kron(σ_p, σ_m) + np.kron(σ_m, σ_p)) + np.kron(σ_z, σ_z)
    edges = [(i, (i + 1) % number_spins) for i in range(number_spins)]
    hamiltonian = ls.Operator(basis, [ls.Interaction(matrix, edges)])

    # Diagonalize the Hamiltonian using ARPACK
    eigenvalues, eigenstates = ls.diagonalize(hamiltonian, k=1)
    print("Ground state energy is {:.10f}".format(eigenvalues[0]))
    assert np.isclose(eigenvalues[0], -18.06178542)
def test_cast_to_basis():
    T = ls.Symmetry([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], sector=5)
    P = ls.Symmetry([9, 8, 7, 6, 5, 4, 3, 2, 1, 0], sector=1)
    basis1 = ls.SpinBasis(ls.Group([T]), number_spins=10, hamming_weight=5, spin_inversion=-1)
    basis1.build()

    matrix = np.array([[1, 0, 0, 0], [0, -1, 2, 0], [0, 2, -1, 0], [0, 0, 0, 1]])
    edges = [(i, (i + 1) % basis1.number_spins) for i in range(basis1.number_spins)]
    operator1 = ls.Operator(basis1, [ls.Interaction(matrix, edges)])
    E1, x1 = ls.diagonalize(operator1)
    x1 = x1.squeeze()

    basis2 = ls.SpinBasis(ls.Group([P]), number_spins=10, hamming_weight=5)
    basis2.build()
    operator2 = ls.Operator(basis2, [ls.Interaction(matrix, edges)])

    E2, x2 = ls.diagonalize(operator2)
    x2 = x2.squeeze()
    assert np.isclose(E1, E2)

    y = reference_cast_to_basis(basis1, basis2, x2)
    y2 = cast_to_basis(basis1, basis2, x2)
    assert np.allclose(y, y2)
    assert np.isclose(np.abs(np.dot(x1, y)), 1.0)
Пример #4
0
def test_state_info_flat_basis():
    basis = ls.SpinBasis(ls.Group(
        [ls.Symmetry(list(range(1, 20)) + [0], sector=1)]),
                         number_spins=20)
    basis.build()
    flat = ls.FlatSpinBasis(basis)
    full = ls.SpinBasis(ls.Group([]), number_spins=20)
    full.build()
    r1, e1, n1 = basis.batched_state_info(
        np.hstack((full.states.reshape(-1, 1),
                   np.zeros((full.number_states, 7), dtype=np.uint64))))
    r2, e2, n2 = flat.state_info(full.states)
    assert np.all(r1[:, 0] == r2)
    assert np.all(n1 == n2)
    assert np.all(e1 == e2)

    is_r2, n2 = flat.is_representative(full.states)
    assert np.all(basis.states == full.states[is_r2.view(np.bool_)])
Пример #5
0
def make_basis(L_x, L_y, sectors=dict()):
    assert L_x > 0 and L_y > 0
    sites = np.arange(L_y * L_x, dtype=np.int32)
    x = sites % L_x
    y = sites // L_x

    symmetries = []
    if L_x > 1:
        T_x = (x + 1) % L_x + L_x * y  # translation along x-direction
        symmetries.append(("T_x", T_x, sectors.get("T_x", 0)))
        P_x = (L_x - 1 - x) + L_x * y  # reflection over y-axis
        symmetries.append(("P_x", P_x, sectors.get("P_x", 0)))
    if L_y > 1:
        T_y = x + L_x * ((y + 1) % L_y)  # translation along y-direction
        symmetries.append(("T_y", T_y, sectors.get("T_y", 0)))
        P_y = x + L_x * (L_y - 1 - y)  # reflection around x-axis
        symmetries.append(("P_y", P_y, sectors.get("P_y", 0)))
    if L_x == L_y and L_x > 1:  # Rotations are valid only for square samples
        R = np.rot90(sites.reshape(L_y, L_x), k=-1).reshape(-1)
        symmetries.append(("R", R, sectors.get("R", 0)))
    if L_x * L_y % 2 == 0:
        symmetries.append(("I", None, sectors.get("I", 0)))

    hamming_weight = (L_x * L_y) // 2
    spin_inversion = None
    processed_symmetries = []
    for s in symmetries:
        _, x1, x2 = s
        if x1 is None:
            assert x2 == 0 or x2 == 1
            spin_inversion = 1 if x2 == 0 else -1
        else:
            processed_symmetries.append(ls.Symmetry(x1, sector=x2))

    group = ls.Group(processed_symmetries)
    basis = ls.SpinBasis(
        group,
        number_spins=L_x * L_y,
        hamming_weight=hamming_weight,
        spin_inversion=spin_inversion,
    )
    basis.build()
    return basis
Пример #6
0
def test_construct_flat_basis():
    basis = ls.SpinBasis(ls.Group([]), number_spins=4, hamming_weight=2)
    flat_basis = ls.FlatSpinBasis(basis)
    assert flat_basis.number_spins == 4
    assert flat_basis.hamming_weight == 2
    assert flat_basis.spin_inversion is None

    basis = ls.SpinBasis(ls.Group([ls.Symmetry([1, 2, 3, 0], sector=1)]),
                         number_spins=4,
                         hamming_weight=2)
    flat_basis = ls.FlatSpinBasis(basis)
    assert flat_basis.number_spins == 4
    assert flat_basis.hamming_weight == 2
    assert flat_basis.spin_inversion is None
    # print(flat_basis.serialize())
    buf = flat_basis.serialize()
    other_basis = ls.FlatSpinBasis.deserialize(buf)
    assert other_basis.number_spins == 4
    assert other_basis.hamming_weight == 2
    assert other_basis.spin_inversion is None
    assert np.all(other_basis.serialize() == buf)
Пример #7
0
def test_2_spins():
    basis = ls.SpinBasis(ls.Group([]), number_spins=2)
    basis.build()
    assert basis.states.tolist() == [0, 1, 2, 3]
    with pytest.raises(ls.LatticeSymmetriesException):
        ls.SpinBasis(ls.Group([]),
                     number_spins=2,
                     hamming_weight=2,
                     spin_inversion=1)
    with pytest.raises(ls.LatticeSymmetriesException):
        ls.SpinBasis(ls.Group([]),
                     number_spins=2,
                     hamming_weight=2,
                     spin_inversion=-1)
    basis = ls.SpinBasis(ls.Group([ls.Symmetry([1, 0], sector=1)]),
                         number_spins=2)
    basis.build()
    assert basis.states.tolist() == [1]
    assert basis.state_info(0) == (0, 1.0, 0.0)
    assert basis.state_info(1) == (1, 1.0, pytest.approx(1 / math.sqrt(2)))
    assert basis.state_info(2) == (1, -1.0, pytest.approx(1 / math.sqrt(2)))
    assert basis.state_info(3) == (3, 1.0, 0.0)
Пример #8
0
def _ls_make_basis(symmetries, number_spins, hamming_weight=None, build=True):
    spin_inversion = None
    processed_symmetries = []
    for s in symmetries:
        _, x1, x2 = s
        if x1 is None:
            assert x2 == 0 or x2 == 1
            spin_inversion = 1 if x2 == 0 else -1
        else:
            processed_symmetries.append(ls.Symmetry(x1, sector=x2))

    group = ls.Group(processed_symmetries)
    logger.info("Symmetry group contains {} elements", len(group))
    basis = ls.SpinBasis(
        group,
        number_spins=number_spins,
        hamming_weight=hamming_weight,
        spin_inversion=spin_inversion,
    )
    if build:
        basis.build()
    return basis