Пример #1
0
 def __init__(self, y, a):
     """
     The mean squared error cost function.
     Should be used as the last layer for a network.
     """
     # Call the base class' constructor.
     Layer.__init__(self, [y, a])
 def __init__(self,
              axis=None,
              momentum=None,
              epsilon=None,
              center=None,
              scale=None,
              beta_initializer=None,
              gamma_initializer=None,
              moving_mean_initializer=None,
              moving_variance_initializer=None,
              beta_regularizer=None,
              gamma_regularizer=None,
              beta_constraint=None,
              gamma_constraint=None):
     Layer.__init__(self)
     self.axis = axis
     self.momentum = momentum
     self.epsilon = epsilon
     self.center = center
     self.scale = scale
     self.beta_initializer = beta_initializer
     self.gamma_initializer = gamma_initializer
     self.moving_mean_initializer = moving_mean_initializer
     self.moving_variance_initializer = moving_variance_initializer
     self.beta_regularizer = beta_regularizer
     self.gamma_regularizer = gamma_regularizer
     self.beta_constraint = beta_constraint
     self.gamma_constraint = gamma_constraint
     self.name = 'BatchNormalization'
 def __init__(self, units, activation, recurrent_activation, use_bias,
              kernel_initializer, recurrent_initializer, bias_initializer,
              kernel_regularizer, recurrent_regularizer, bias_regularizer,
              activity_regularizer, kernel_constraint, recurrent_constraint,
              bias_constraint, dropout, recurrent_dropout, implementation,
              return_sequences, return_state, go_backwards, stateful,
              unroll):
     Layer.__init__(self)
     KernelBiasSupport.__init__(self, use_bias, kernel_initializer,
                                bias_initializer, kernel_regularizer,
                                bias_regularizer, activity_regularizer,
                                kernel_constraint, bias_constraint)
     self.units = units
     self.activation = activation
     self.recurrent_activation = recurrent_activation
     self.recurrent_initializer = recurrent_initializer
     self.recurrent_regularizer = recurrent_regularizer
     self.dropout = dropout
     self.recurrent_dropout = recurrent_dropout
     self.implementation = implementation
     self.return_sequencies = return_sequences
     self.return_state = return_state
     self.go_backwards = go_backwards
     self.stateful = stateful
     self.unroll = unroll
     self.recurrent_constraint = recurrent_constraint
Пример #4
0
 def __init__(self, d={}, name='image', verbose=False):
     self.name = name
     Layer.__init__(self, d, verbose)
     self.i = Layer.arg(d)
     self.threshold = self.attr('threshold', 200)
     self.imgs = {}
     self.mod = None
Пример #5
0
 def __init__(self, shape=None, batch_shape=None, dtype=None, sparse=None, tensor=None):
     Layer.__init__(self)
     self.shape = shape
     self.batch_shape = batch_shape
     self.dtype = dtype
     self.sparse = sparse
     self.tensor = tensor
     self.name = 'Input'
Пример #6
0
 def __init__(self, units=None, activation=None, use_bias=True, kernel_initializer=None,
              bias_initializer=None, kernel_regularizer=None, bias_regularizer=None,
              activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
     Layer.__init__(self)
     KernelBiasSupport.__init__(self, use_bias, kernel_initializer, bias_initializer, kernel_regularizer,
                                bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint)
     self.units = units
     self.activation = activation
     self.name = 'Dense'
Пример #7
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     assert self.attr('box')
     self.attr('units')
     self.outline = Layer.arg(d)
     self.radius = self.attr('corner-radius', 0)
     self.width = self.attr('line-width', 1)
     self.fillColor = self.attr('fill-color', None)
     assert self.radius==0 or self.width < self.radius
Пример #8
0
 def __init__(self, name, pWidth, pHeight, inputWidth, inputHeight, channel,
              prev):
     self._poolInfo = [pWidth, pHeight]
     self._inputInfo = [inputWidth, inputHeight, channel]
     self._calcWindows()
     windowSize = self._windowNum[0] * self._windowNum[1]
     Layer.__init__(self, name, windowSize * self._inputInfo[CHANNEL], prev)
     assert prev != None
     assert prev._size == inputWidth * inputHeight * channel
Пример #9
0
 def __init__(self, shape, input_shape, activation=tf.nn.tanh):
     self.shape = shape
     self.input_shape = input_shape
     self.activation = (lambda x: x) if activation is None else activation
     Layer.__init__(self, True, [
         {'name': 'b1', 'type': 'b', 'shape': self.shape[-1]},
         {'name': 'b2', 'type': 'b', 'shape': self.shape[-2]},
         {'name': 'w',  'type': 'w', 'shape': self.shape}
     ])
Пример #10
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.color = Layer.arg(d)
     self.r1 = self.attr('radius', 2)
     self.r2 = self.attr('distance', 5) + self.r1
     self.grad = self.attr('grad', True)
     self.opacity = int(255 * min(self.attr('opacity', 100.0), 100.0) /
                        100.0)
     assert self.attr('box')
     self.attr('units')
Пример #11
0
    def __init__(self,
                 data=None,
                 projection=None,
                 geotransform=None,
                 name=None,
                 keywords=None,
                 style_info=None):
        """Initialise object with either data or filename

        NOTE: Doc strings in constructor are not harvested and exposed in
        online documentation. Hence the details are specified in the
        class docstring.
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info)

        # Input checks
        if data is None:
            # Instantiate empty object
            self.geotransform = None
            self.rows = self.columns = 0
            return

        # Initialisation
        if isinstance(data, basestring):
            self.read_from_file(data)
        elif isinstance(data, QgsRasterLayer):
            self.read_from_qgis_native(data)
        else:
            # Assume that data is provided as a numpy array
            # with extra keyword arguments supplying metadata

            self.data = numpy.array(data, dtype='d', copy=False)

            proj4 = self.get_projection(proj4=True)
            if 'longlat' in proj4 and 'WGS84' in proj4:
                # This is only implemented for geographic coordinates
                # Omit check for projected coordinate systems
                check_geotransform(geotransform)
            self.geotransform = geotransform

            self.rows = data.shape[0]
            self.columns = data.shape[1]

            self.number_of_bands = 1

            # We assume internal numpy layers are using nan correctly
            # FIXME (Ole): If read from file is refactored to load the data
            #              this should be taken care of there
            self.nodata_value = numpy.nan
Пример #12
0
    def __init__(self, shape):
        self.shape = shape
        Layer.__init__(self, False, [{
            'name': '_marginal_init',
            'type': 'b',
            'shape': shape[1:]
        }])

        # Define state placeholder
        self.marginal = tf.placeholder(tf.float32, [None, self.shape[-1]])
        self._marginal = self.marginal
Пример #13
0
 def __init__(self, name, prev):
     assert prev != None
     Layer.__init__(self, name, prev._size, prev)
     self._average = np.zeros((prev._size, 1))
     self._variance = np.zeros((prev._size, 1))
     self._iter = 0
     self._isTraining = False
     self._beta = np.zeros((prev._size, 1))
     self._beta.fill(1)
     self._gamma = np.zeros((prev._size, 1))
     self._gamma.fill(1)
Пример #14
0
 def __init__(self, input_dim=None, output_dim=None, embeddings_initializer=None,
              embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None,
              mask_zero=None, input_length=None):
     Layer.__init__(self)
     self.input_dim = input_dim
     self.output_dim = output_dim
     self.embedding_initializer = embeddings_initializer
     self.embedding_regularizer = embeddings_regularizer
     self.activity_regularizer = activity_regularizer
     self.embedding_constraint = embeddings_constraint
     self.mask_zero = mask_zero
     self.input_length = input_length
     self.name = 'Embedding'
Пример #15
0
    def __init__(self, data=None, projection=None, geotransform=None,
                 name=None, keywords=None, style_info=None):
        """Initialise object with either data or filename

        NOTE: Doc strings in constructor are not harvested and exposed in
        online documentation. Hence the details are specified in the
        class docstring.
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info)

        # Input checks
        if data is None:
            # Instantiate empty object
            self.geotransform = None
            self.rows = self.columns = 0
            return

        # Initialisation
        if isinstance(data, basestring):
            self.read_from_file(data)
        elif isinstance(data, QgsRasterLayer):
            self.read_from_qgis_native(data)
        else:
            # Assume that data is provided as a numpy array
            # with extra keyword arguments supplying metadata

            self.data = numpy.array(data, dtype='d', copy=False)

            proj4 = self.get_projection(proj4=True)
            if 'longlat' in proj4 and 'WGS84' in proj4:
                # This is only implemented for geographic coordinates
                # Omit check for projected coordinate systems
                check_geotransform(geotransform)
            self.geotransform = geotransform

            self.rows = data.shape[0]
            self.columns = data.shape[1]

            self.number_of_bands = 1

            # We assume internal numpy layers are using nan correctly
            # FIXME (Ole): If read from file is refactored to load the data
            #              this should be taken care of there
            self.nodata_value = numpy.nan
Пример #16
0
 def __init__(self, name, size, prev):
     Layer.__init__(self, name, size, prev)
     assert prev != None
     # randomly initiate weight and bias
     self._w = np.random.uniform(0,
                                 2.0 / prev._size,
                                 size=(size, prev._size))
     self._b = np.zeros((size, 1))
     self._dLdw = np.zeros((size, prev._size))
     self._dLdb = np.zeros((size, 1))
     self._Vdw = np.zeros((size, prev._size))
     self._Vdb = np.zeros((size, 1))
     self._Sdw = np.zeros((size, prev._size))
     self._Sdb = np.zeros((size, 1))
 def __init__(self, filters=None, kernel_size=None, strides=1, padding='valid',
              data_format='channels_last', dilation_rate=1, activation=None, use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
              kernel_constraint=None, bias_constraint=None):
     Layer.__init__(self)
     KernelBiasSupport.__init__(self, use_bias, kernel_initializer, bias_initializer, kernel_regularizer,
                                bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint)
     self.strides = strides
     self.activation = activation
     self.filters = filters
     self.kernel_size = kernel_size
     self.padding = padding
     self.data_format = data_format
     self.dilation_rate = dilation_rate
Пример #18
0
    def __init__(self, K, N):
        Layer.__init__(self)

        # input number of neuron
        self.K_ = K

        # output number of neuron
        self.N_ = N

        self.bias_term_ = None
        self.bias_multiplier_ = None
        self.transpose_ = False

        self.W = Blob()
        self.b = Blob()
        self.blobs_.append(self.W)
        self.blobs_.append(self.b)
Пример #19
0
 def __init__(self, index, data_mgr, config_topography, size_total,
              ocean_altitude_relative, border_start_relative):
     Layer.__init__(self, "topography", index, data_mgr)
     self.requires_layers = []
     # parameters:
     self.height = config_topography.getfloat("height")
     self.scale = config_topography.getfloat("scale")
     self.ocean_altitude = ocean_altitude_relative * self.height
     self.border_start_relative = border_start_relative
     #
     self.perlin_seed = 9601
     self.perlin_levels = []  # [(scale,amplitude), ...]
     # components:
     self.perlin = None
     # internal variables:
     self._size_half = int(self.data_mgr.size_total / 2.0) * self.scale
     self._border_start = self.border_start_relative * self._size_half
Пример #20
0
 def __init__(self, name, depth, kWidth, kHeight, stride, prev, inputWidth,
              inputHeight, inputChannel):
     self._kernalInfo = [kWidth, kHeight, depth, stride]
     self._inputInfo = [inputWidth, inputHeight, inputChannel]
     self._calcWindows()
     assert prev != None
     assert prev._size == inputWidth * inputHeight * inputChannel
     Layer.__init__(
         self, name,
         self._windowNum[0] * self._windowNum[1] * self._kernalInfo[DEPTH],
         prev)
     self._kernal = np.random.normal(
         size=(self._kernalInfo[WIDTH] * self._kernalInfo[HEIGHT] *
               self._inputInfo[CHANNEL], self._kernalInfo[DEPTH]))
     self._bias = np.random.normal(size=(1, self._kernalInfo[DEPTH]))
     self._dLdKernal = np.zeros(self._kernal.shape)
     self._dLdb = np.zeros(self._bias.shape)
Пример #21
0
    def __init__(self, hh, ww, fout, pad, stride):
        Layer.__init__(self)
        self.kernel_shape_ = None
        self.stride_ = None
        self.pad_ = None
        self.dilation_ = None
        self.conv_input_shape_ = None
        self.col_buffer_shape_ = None
        self.output_shape_ = None
        self.bottom_shape_ = None

        self.num_spatial_axes_ = None
        self.bottom_dim_ = None
        self.top_dim_ = None
        self.channel_axis_ = None
        self.num_ = None
        self.channels_ = None
        self.group_ = None
        self.out_spatial_dim_ = None
        self.weight_offset_ = None
        self.num_output_ = None
        self.bias_term_ = None
        self.is_1x1_ = None
        self.force_nd_im2col_ = None

        #self.N    = N
        #self.C    = C
        self.hh = hh
        self.ww = ww
        self.fout = fout
        self.pad = pad
        self.stride = stride

        self.W = Blob()
        self.b = Blob()
        self.blobs_.append(self.W)
        self.blobs_.append(self.b)
Пример #22
0
    def __init__(self, shape):
        self.shape = shape
        self.input_shape = shape[0]
        Layer.__init__(self, True, [{
            'name': 'b1',
            'type': 'b',
            'shape': shape[-1]
        }, {
            'name': 'b2',
            'type': 'b',
            'shape': shape[-1]
        }, {
            'name': 'b3',
            'type': 'b',
            'shape': shape[-1]
        }, {
            'name': 'w1',
            'type': 'w',
            'shape': (shape[0] + shape[-1], shape[-1])
        }, {
            'name': 'w2',
            'type': 'w',
            'shape': (shape[0] + shape[-1], shape[-1])
        }, {
            'name': 'w3',
            'type': 'w',
            'shape': (shape[0] + shape[-1], shape[-1])
        }, {
            'name': '_state_init',
            'type': 'b',
            'shape': (shape[-1], )
        }])

        # Define state placeholder
        self.state = tf.placeholder(tf.float32, [None, self.shape[-1]])
        self._state = self.state
Пример #23
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.color = Layer.arg(d)
     self.radius = self.attr('gauss-blur-radius', 2)
Пример #24
0
 def __init__(self, batch_size):
     Layer.__init__(self)
     self.batch_size_ = batch_size
     self.datasets_  = None
     self.cur_ = 0
 def __init__(self, tree, act_citation):
     Layer.__init__(self, tree)
     self.act_citation = act_citation
Пример #26
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.color = Layer.arg(d)
Пример #27
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.opacity = min(Layer.arg(d), 100.0) / 100.0
Пример #28
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.level = int(Layer.arg(d))
Пример #29
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.color = Layer.arg(d)
     self.range = self.attr('range', [.2, .5])
Пример #30
0
 def __init__(self, size):
     Layer.__init__(self, "input", size, None)
Пример #31
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.mode = Layer.arg(d)
Пример #32
0
    def __init__(self, data=None, projection=None, geometry=None,
                 geometry_type=None,
                 name='', keywords=None, style_info=None):
        """Initialise object with either geometry or filename

        Input
            data: Can be either
                * a filename of a vector file format known to GDAL
                * List of dictionaries of fields associated with
                  point coordinates
                * None
            projection: Geospatial reference in WKT format.
                        Only used if geometry is provide as a numeric array,
                        if None, WGS84 geographic is assumed
            geometry: A list of either point coordinates or polygons/lines
                      (see note below)
            geometry_type: Desired interpretation of geometry.
                           Valid options are 'point', 'line', 'polygon' or
                           the ogr types: 1, 2, 3
                           If None, a geometry_type will be inferred
            name: Optional name for layer.
                  Only used if geometry is provide as a numeric array
            keywords: Optional dictionary with keywords that describe the
                      layer. When the layer is stored, these keywords will
                      be written into an associated file with extension
                      .keywords.

                      Keywords can for example be used to display text
                      about the layer in a web application.
            style_info: Dictionary with information about how this layer
                        should be styled. See impact_functions/styles.py
                        for examples.

        Notes

        If data is a filename, all other arguments are ignored
        as they will be inferred from the file.

        The geometry type will be inferred from the dimensions of geometry.
        If each entry is one set of coordinates the type will be ogr.wkbPoint,
        if it is an array of coordinates the type will be ogr.wkbPolygon.

        Each polygon or line feature take the form of an Nx2 array representing
        vertices where line segments are joined
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info)

        # Input checks
        if data is None and geometry is None:
            # Instantiate empty object
            self.geometry_type = None
            self.extent = [0, 0, 0, 0]
            return

        if isinstance(data, basestring):
            self.read_from_file(data)
        else:
            # Assume that data is provided as sequences provided as
            # arguments to the Vector constructor
            # with extra keyword arguments supplying metadata

            msg = 'Geometry must be specified'
            verify(geometry is not None, msg)

            msg = 'Geometry must be a sequence'
            verify(is_sequence(geometry), msg)
            self.geometry = geometry

            self.geometry_type = get_geometry_type(geometry, geometry_type)

            if data is None:
                # Generate default attribute as OGR will do that anyway
                # when writing
                data = []
                for i in range(len(geometry)):
                    data.append({'ID': i})

            # Check data
            self.data = data
            if data is not None:
                msg = 'Data must be a sequence'
                verify(is_sequence(data), msg)

                msg = ('The number of entries in geometry and data '
                       'must be the same')
                verify(len(geometry) == len(data), msg)
 def __init__(self, tree, notices):
     Layer.__init__(self, tree)
     self.notices = notices
Пример #34
0
    def __init__(self, data=None, projection=None, geometry=None,
                 geometry_type=None, name=None, keywords=None,
                 style_info=None, sublayer=None):
        """Initialise object with either geometry or filename

        Args:
            * data: Can be either
                * A filename of a vector file format known to GDAL.
                * List of dictionaries of field names and attribute values
                  associated with each point coordinate.
                * None
            * projection: Geospatial reference in WKT format.
                Only used if geometry is provided as a numeric array,
                if None, WGS84 geographic is assumed.
            * geometry: A list of either point coordinates or polygons/lines
                (see note below).
            * geometry_type: Desired interpretation of geometry.
                Valid options are 'point', 'line', 'polygon' or
                the ogr types: 1, 2, 3.
                If None, a geometry_type will be inferred from the data.
            * name: Optional name for layer. If None, basename is used.
            * keywords: Optional dictionary with keywords that describe the
                layer. When the layer is stored, these keywords will
                be written into an associated file with extension
                '.keywords'.

                Keywords can for example be used to display text about the
                layer in an application.
            * style_info: Dictionary with information about how this layer
                should be styled. See impact_functions/styles.py
                for examples.
            * sublayer: str Optional sublayer (band name in the case of raster,
                  table name in case of sqlite etc.) to load. Only applicable
                  to those dataformats supporting more than one layer in the
                  data file.

        Returns:
            * An instance of class Vector.

        Raises:
            * Propogates any exceptions encountered.

        Notes:

            If data is a filename, all other arguments are ignored
            as they will be inferred from the file.

            The geometry type will be inferred from the dimensions of geometry.
            If each entry is one set of coordinates the type will be
            ogr.wkbPoint,
            if it is an array of coordinates the type will be ogr.wkbPolygon.

            To cast array entries as lines set geometry_type explicitly to
            'line' in the call to Vector. Otherwise, they will default to
            polygons.

            Each polygon or line feature take the form of an Nx2 array
            representing vertices where line segments are joined.

            If polygons have holes, their geometry must be passed in as a
            list of polygon geometry objects
            (as defined in module geometry.py)
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info,
                       sublayer=sublayer)

        # Input checks
        if data is None and geometry is None:
            # Instantiate empty object
            self.geometry_type = None
            self.extent = [0, 0, 0, 0]
            return

        if isinstance(data, basestring):
            self.read_from_file(data)
        else:
            # Assume that data is provided as sequences provided as
            # arguments to the Vector constructor
            # with extra keyword arguments supplying metadata

            msg = 'Geometry must be specified'
            verify(geometry is not None, msg)

            msg = 'Geometry must be a sequence'
            verify(is_sequence(geometry), msg)

            if len(geometry) > 0 and isinstance(geometry[0], Polygon):
                self.geometry_type = ogr.wkbPolygon
                self.geometry = geometry
            else:
                self.geometry_type = get_geometry_type(geometry, geometry_type)

                # Convert to objects if input is a list of simple arrays
                if self.is_polygon_data:
                    self.geometry = [Polygon(outer_ring=x) for x in geometry]
                else:
                    self.geometry = geometry

            if data is None:
                # Generate default attribute as OGR will do that anyway
                # when writing
                data = []
                for i in range(len(geometry)):
                    data.append({'ID': i})

            # Check data
            self.data = data
            if data is not None:
                msg = 'Data must be a sequence'
                verify(is_sequence(data), msg)

                msg = ('The number of entries in geometry and data '
                       'must be the same')
                verify(len(geometry) == len(data), msg)

            # Establish extent
            if len(geometry) == 0:
                # Degenerate layer
                self.extent = [0, 0, 0, 0]
                return

            # Compute bounding box for each geometry type
            minx = miny = sys.maxint
            maxx = maxy = -minx
            if self.is_point_data:
                A = numpy.array(self.get_geometry())
                minx = min(A[:, 0])
                maxx = max(A[:, 0])
                miny = min(A[:, 1])
                maxy = max(A[:, 1])
            elif self.is_line_data:
                for g in self.get_geometry():
                    A = numpy.array(g)
                    minx = min(minx, min(A[:, 0]))
                    maxx = max(maxx, max(A[:, 0]))
                    miny = min(miny, min(A[:, 1]))
                    maxy = max(maxy, max(A[:, 1]))
            elif self.is_polygon_data:
                # Do outer ring only
                for g in self.get_geometry(as_geometry_objects=False):
                    A = numpy.array(g)
                    minx = min(minx, min(A[:, 0]))
                    maxx = max(maxx, max(A[:, 0]))
                    miny = min(miny, min(A[:, 1]))
                    maxy = max(maxy, max(A[:, 1]))

            self.extent = [minx, maxx, miny, maxy]
Пример #35
0
    def __init__(self, data=None, projection=None, geotransform=None,
                 name='', keywords=None, style_info=None):
        """Initialise object with either data or filename

        Input
            data: Can be either
                * a filename of a raster file format known to GDAL
                * an MxN array of raster data
                * None (FIXME (Ole): Remove this option)
            projection: Geospatial reference in WKT format.
                        Only used if data is provide as a numeric array,
                        if None, WGS84 geographic is assumed
            geotransform: GDAL geotransform (6-tuple).
                          (top left x, w-e pixel resolution, rotation,
                           top left y, rotation, n-s pixel resolution).
                          See e.g. http://www.gdal.org/gdal_tutorial.html
                          Only used if data is provide as a numeric array,
            name: Optional name for layer.
                  Only used if data is provide as a numeric array,
            keywords: Optional dictionary with keywords that describe the
                      layer. When the layer is stored, these keywords will
                      be written into an associated file with extension
                      .keywords.

                      Keywords can for example be used to display text
                      about the layer in a web application.
            style_info: Dictionary with information about how this layer
                        should be styled. See impact_functions/styles.py
                        for examples.

        Note that if data is a filename, all other arguments are ignored
        as they will be inferred from the file.
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info)

        # Input checks
        if data is None:
            # Instantiate empty object
            self.geotransform = None
            self.rows = self.columns = 0
            return

        # Initialisation
        if isinstance(data, basestring):
            self.read_from_file(data)
        else:
            # Assume that data is provided as an array
            # with extra keyword arguments supplying metadata

            self.data = numpy.array(data, dtype='d', copy=False)
            self.geotransform = geotransform

            self.rows = data.shape[0]
            self.columns = data.shape[1]

            self.number_of_bands = 1
Пример #36
0
    def __init__(self, data=None, projection=None, geometry=None,
                 geometry_type=None, name=None, keywords=None,
                 style_info=None, sublayer=None):
        """Initialise object with either geometry or filename

        NOTE: Doc strings in constructor are not harvested and exposed in
        online documentation. Hence the details are specified in the
        class docstring.
        """

        # Invoke common layer constructor
        Layer.__init__(self,
                       name=name,
                       projection=projection,
                       keywords=keywords,
                       style_info=style_info,
                       sublayer=sublayer)

        # Input checks
        if data is None and geometry is None:
            # Instantiate empty object
            self.geometry_type = None
            self.extent = [0, 0, 0, 0]
            return

        if isinstance(data, basestring):
            self.read_from_file(data)
        else:
            # Assume that data is provided as sequences provided as
            # arguments to the Vector constructor
            # with extra keyword arguments supplying metadata

            msg = 'Geometry must be specified'
            verify(geometry is not None, msg)

            msg = 'Geometry must be a sequence'
            verify(is_sequence(geometry), msg)

            if len(geometry) > 0 and isinstance(geometry[0], Polygon):
                self.geometry_type = ogr.wkbPolygon
                self.geometry = geometry
            else:
                self.geometry_type = get_geometry_type(geometry, geometry_type)

                if self.is_polygon_data:
                    # Convert to objects if input is a list of simple arrays
                    self.geometry = [Polygon(outer_ring=x) for x in geometry]
                else:
                    # Convert to list if input is an array
                    if isinstance(geometry, numpy.ndarray):
                        self.geometry = geometry.tolist()
                    else:
                        self.geometry = geometry

            if data is None:
                # Generate default attribute as OGR will do that anyway
                # when writing
                data = []
                for i in range(len(geometry)):
                    data.append({'ID': i})

            # Check data
            self.data = data
            if data is not None:
                msg = 'Data must be a sequence'
                verify(is_sequence(data), msg)

                msg = ('The number of entries in geometry and data '
                       'must be the same')
                verify(len(geometry) == len(data), msg)

            # Establish extent
            if len(geometry) == 0:
                # Degenerate layer
                self.extent = [0, 0, 0, 0]
                return

            # Compute bounding box for each geometry type
            minx = miny = sys.maxint
            maxx = maxy = -minx
            if self.is_point_data:
                A = numpy.array(self.get_geometry())
                minx = min(A[:, 0])
                maxx = max(A[:, 0])
                miny = min(A[:, 1])
                maxy = max(A[:, 1])
            elif self.is_line_data:
                for g in self.get_geometry():
                    A = numpy.array(g)
                    minx = min(minx, min(A[:, 0]))
                    maxx = max(maxx, max(A[:, 0]))
                    miny = min(miny, min(A[:, 1]))
                    maxy = max(maxy, max(A[:, 1]))
            elif self.is_polygon_data:
                # Do outer ring only
                for g in self.get_geometry(as_geometry_objects=False):
                    A = numpy.array(g)
                    minx = min(minx, min(A[:, 0]))
                    maxx = max(maxx, max(A[:, 0]))
                    miny = min(miny, min(A[:, 1]))
                    maxy = max(maxy, max(A[:, 1]))

            self.extent = [minx, maxx, miny, maxy]
Пример #37
0
 def __init__(self, d, verbose=False):
     Layer.__init__(self, d, verbose)
     self.angle = float(Layer.arg(d))