Пример #1
0
    def call(self, input_tensor, training=None):
        inputs_hat = self.get_predictions(input_tensor)
        b = tf.zeros(
            shape=[K.shape(inputs_hat)[0], self.num_caps, self.num_in_caps])

        assert self.routings > 0, 'routing should be > 0.'
        for i in range(self.routings):
            # c.shape=[batch_size, num_caps, num_in_caps]
            c = tf.nn.softmax(b, axis=1)
            activations = squash(K.batch_dot(c, inputs_hat,
                                             [2, 2]))  # [None, 10, 16]

        return activations
Пример #2
0
    def build_network(self, x):
        # Building network...
        with tf.variable_scope('CapsNet'):
            # Layer 1: A 2D conv layer
            conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1,
                                  padding='valid', activation='relu', name='conv1')(x)

            # Layer 2: Primary Capsule Layer; simply a 2D conv + reshaping
            primary_caps = layers.Conv2D(filters=256, kernel_size=9, strides=2,
                                         padding='valid', activation='relu', name='primary_caps')(conv1)
            _, H, W, dim = primary_caps.get_shape()
            num_caps = H.value * W.value * dim.value / self.conf.prim_caps_dim
            primary_caps_reshaped = layers.Reshape((num_caps, self.conf.prim_caps_dim))(primary_caps)
            caps1_output = squash(primary_caps_reshaped)

            # Layer 3: Digit Capsule Layer; Here is where the routing takes place
            self.digit_caps = FCCapsuleLayer(num_caps=self.conf.num_cls, caps_dim=self.conf.digit_caps_dim,
                                             routings=3, name='digit_caps')(caps1_output)
            # [?, 10, 16]

            self.mask()
            self.decoder()
    def build_network(self, x):
        # Building network...
        with tf.variable_scope('CapsNet'):
            # Layer 1: A 3D conv layer
            conv1 = layers.Conv3D(filters=256,
                                  kernel_size=9,
                                  strides=1,
                                  padding='valid',
                                  activation='relu',
                                  name='conv1')(x)

            # Layer 2: Primary Capsule Layer; simply a 3D conv + reshaping
            primary_caps = layers.Conv3D(filters=256,
                                         kernel_size=9,
                                         strides=2,
                                         padding='valid',
                                         activation='relu',
                                         name='primary_caps')(conv1)
            _, H, W, D, dim = primary_caps.get_shape()
            primary_caps_reshaped = layers.Reshape(
                (H.value * W.value * D.value, dim.value))(primary_caps)
            caps1_output = squash(primary_caps_reshaped)
            # [?, 512, 256]
            # Layer 3: Digit Capsule Layer; Here is where the routing takes place
            digitcaps_layer = FCCapsuleLayer(num_caps=self.conf.num_cls,
                                             caps_dim=self.conf.digit_caps_dim,
                                             routings=3,
                                             name='digit_caps')
            self.digit_caps = digitcaps_layer(caps1_output)  # [?, 2, 16]
            u_hat = digitcaps_layer.get_predictions(
                caps1_output)  # [?, 2, 512, 16]
            u_hat_shape = u_hat.get_shape().as_list()
            self.img_s = int(round(u_hat_shape[2]**(1. / 3)))
            self.u_hat = layers.Reshape(
                (self.conf.num_cls, self.img_s, self.img_s, self.img_s, 1,
                 self.conf.digit_caps_dim))(u_hat)
            # self.u_hat = tf.transpose(u_hat, perm=[1, 0, 2, 3, 4, 5, 6])
            # u_hat: [?, 2, 8, 8, 8, 1, 16]
            self.decoder()