Пример #1
0
 def __init__(self, c, args):
     super(Shallow, self).__init__(c)
     self.manifold = getattr(manifolds, args.manifold)()
     self.use_feats = args.use_feats
     weights = torch.Tensor(args.n_nodes, args.dim)
     if not args.pretrained_embeddings:
         weights = self.manifold.init_weights(weights, self.c)
         trainable = True
     else:
         weights = torch.Tensor(np.load(args.pretrained_embeddings))
         assert weights.shape[
             0] == args.n_nodes, "The embeddings you passed seem to be for another dataset."
         trainable = False
     self.lt = manifolds.ManifoldParameter(weights, trainable,
                                           self.manifold, self.c)
     self.all_nodes = torch.LongTensor(list(range(args.n_nodes)))
     layers = []
     if args.pretrained_embeddings is not None and args.num_layers > 0:
         # MLP layers after pre-trained embeddings
         dims, acts = get_dim_act(args)
         if self.use_feats:
             dims[0] = args.feat_dim + weights.shape[1]
         else:
             dims[0] = weights.shape[1]
         for i in range(len(dims) - 1):
             in_dim, out_dim = dims[i], dims[i + 1]
             act = acts[i]
             layers.append(
                 Linear(in_dim, out_dim, args.dropout, act, args.bias))
     self.layers = nn.Sequential(*layers)
     self.encode_graph = False
Пример #2
0
 def __init__(self, c, args):
     super(MLP, self).__init__(c)
     assert args.num_layers > 0
     dims, acts = get_dim_act(args)
     layers = []
     for i in range(len(dims) - 1):
         in_dim, out_dim = dims[i], dims[i + 1]
         act = acts[i]
         layers.append(Linear(in_dim, out_dim, args.dropout, act,
                              args.bias))
     self.layers = nn.Sequential(*layers)
     self.encode_graph = False
Пример #3
0
 def __init__(self, c, args):
     super(DeepGCN, self).__init__(c)
     assert args.num_layers > 0
     dims, acts = get_dim_act(args)
     gc_layers = []
     gc_layers.append(
         GraphConvolution(dims[0], dims[1], args.dropout, acts[0],
                          args.bias))
     gc_layers.append(
         OriRevLayer(dims, dims[0], dims[1], args.dropout, acts[0],
                     args.bias))
     self.layers = nn.Sequential(*gc_layers)
     self.encode_graph = True
Пример #4
0
 def __init__(self, c, args):
     super(GCN, self).__init__(c)
     assert args.num_layers > 0
     dims, acts = get_dim_act(args)
     gc_layers = []
     for i in range(len(dims) - 1):
         in_dim, out_dim = dims[i], dims[i + 1]
         act = acts[i]
         gc_layers.append(
             GraphConvolution(in_dim, out_dim, args.dropout, act,
                              args.bias))
     self.layers = nn.Sequential(*gc_layers)
     self.encode_graph = True
Пример #5
0
 def __init__(self, c, args):
     super(GAT, self).__init__(c)
     assert args.num_layers > 0
     dims, acts = get_dim_act(args)
     gat_layers = []
     for i in range(len(dims) - 1):
         in_dim, out_dim = dims[i], dims[i + 1]
         act = acts[i]
         assert dims[i + 1] % args.n_heads == 0
         out_dim = dims[i + 1] // args.n_heads
         concat = True
         gat_layers.append(
             GraphAttentionLayer(in_dim, out_dim, args.dropout, act,
                                 args.alpha, args.n_heads, concat))
     self.layers = nn.Sequential(*gat_layers)
     self.encode_graph = True