Пример #1
0
    def _decoder(self, z):

        with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE):

            z = fc(z, 3 * 3 * self._nd_latent, 'fc-z')
            z = tf.reshape(z, (-1, 3, 3, self._nd_latent))

            h1 = conv2d_transpose(z,
                                  256,
                                  name='up1',
                                  padding='VALID',
                                  training=self.is_training,
                                  use_bn=True)

            h2 = conv2d_transpose(h1,
                                  128,
                                  name='up2',
                                  training=self.is_training,
                                  use_bn=True)

            h3 = conv2d_transpose(h2, 64, name='up3')

            recon = conv2d(h3, self._img_shape[-1], kernel_size=1, name='out')

            return tf.nn.sigmoid(recon)
Пример #2
0
    def _generator(self, z, scope, reuse=False):

        with tf.variable_scope(scope, reuse=reuse):
            z = tf.reshape(z, (-1, 1, 1, self._nd_z))

            h1 = conv2d_transpose(z, 1024, name='up1', padding='VALID')
            h2 = conv2d_transpose(h1,
                                  512,
                                  name='up2',
                                  padding='VALID',
                                  training=self.is_training,
                                  use_bn=True)
            h3 = conv2d_transpose(h2,
                                  256,
                                  name='up3',
                                  training=self.is_training,
                                  use_bn=True)
            h4 = conv2d_transpose(h3,
                                  128,
                                  name='up4',
                                  training=self.is_training,
                                  use_bn=True)

            recon = conv2d(h4, self._img_shape[-1], kernel_size=1, name='out')

            return tf.nn.sigmoid(recon)
Пример #3
0
    def decoder(self, z, training=True, reuse=None, name=None):

        # [None, z_dim]  -->  [None, 1024]
        h = dense(z, 1024, reuse=reuse, name='d_dense_1')
        h = batch_norm(h, training=training, reuse=reuse, name='d_bn_1')
        h = tf.nn.relu(h)
        
        # [None, 1024]  -->  [None, 7*7*128]
        h = dense(h, self.min_res*self.min_res*self.min_chans, reuse=reuse, name='d_dense_2')
        h = batch_norm(h, training=training, reuse=reuse, name='d_bn_2')
        h = tf.nn.relu(h)

        # [None, 7*7*128]  -->  [None, 7, 7, 128]
        h = tf.reshape(h, [-1, self.min_res, self.min_res, self.min_chans])

        # [None, 7, 7, 128]  -->  [None, 14, 14, 64]
        h = conv2d_transpose(h, 64, kernel_size=4, strides=2, reuse=reuse, name='d_tconv_1')
        h = batch_norm(h, training=training, reuse=reuse, name='d_bn_3')
        h = tf.nn.relu(h)
                        
        # [None, 14, 14, 64]  -->  [None, 28, 28, 1]
        h = conv2d_transpose(h, 1, kernel_size=4, strides=2, activation=tf.nn.sigmoid, reuse=reuse, name='d_tconv_2')
                        
        # Assign name to final output
        return tf.identity(h, name=name)
Пример #4
0
def generator(n_samples, noise=None, dim=64):
    with tf.variable_scope('generator', reuse=tf.AUTO_REUSE):
        if noise is None:
            noise = tf.random_normal([n_samples, 128])

        x = linear('input', 128, 8 * 4 * 4 * dim, noise)
        x = tf.reshape(x, [-1, 8 * dim, 4, 4])
        x = batch_norm('bn1', x)
        x = tf.nn.relu(x)

        x = conv2d_transpose('c2', 8 * dim, 4 * dim, 5, x)
        x = batch_norm('bn2', x)
        x = tf.nn.relu(x)

        x = conv2d_transpose('c3', 4 * dim, 2 * dim, 5, x)
        x = batch_norm('bn3', x)
        x = tf.nn.relu(x)

        x = conv2d_transpose('c4', 2 * dim, dim, 5, x)
        x = batch_norm('bn4', x)
        x = tf.nn.relu(x)

        x = conv2d_transpose('c5', dim, 3, 5, x)
        x = tf.tanh(x)

        return tf.reshape(x, [-1, 3 * dim * dim])
Пример #5
0
    def _generator(self, z, scope, reuse=False, activation_fn=tf.nn.sigmoid):

        with tf.variable_scope(scope, reuse=reuse):
            z = fc(z, 3 * 3 * self._zdim, 'fc-z')
            z = tf.reshape(z, (-1, 3, 3, self._zdim))

            h1 = conv2d_transpose(z, 256, name='up1', padding='VALID', training=self.is_training, use_bn=True)

            h2 = conv2d_transpose(h1, 128, name='up2', training=self.is_training, use_bn=True)

            h3 = conv2d_transpose(h2, 64, name='up3', training=self.is_training, use_bn=True)

            recon = conv2d(h3, self._img_shape[-1], 'out', kernel_size=1, activation_fn=lambda x: x)
            return activation_fn(recon)
Пример #6
0
def first_block(x,
                target_size,
                noise_dim,
                upsampling='deconv',
                normalization='batch',
                is_training=True):
    if upsampling == 'deconv':
        _x = reshape(x, (1, 1, noise_dim))
        _x = conv2d_transpose(_x,
                              1024,
                              target_size,
                              strides=(1, 1),
                              padding='valid')
    elif upsampling == 'dense':
        _x = dense(x, target_size[0] * target_size[1] * 1024)
        _x = reshape(_x, (target_size[1], target_size[0], 1024))
    else:
        raise ValueError

    if normalization == 'batch':
        _x = batch_norm(_x, is_training=is_training)
    elif normalization == 'layer':
        _x = layer_norm(_x, is_training=is_training)
    elif normalization is None:
        pass
    else:
        raise ValueError
    _x = activation(_x, 'relu')
    return _x
Пример #7
0
    def formNet(self, img_ph, ann_ph, base_filter_num=8):
        down_layer_list = {}
        curr_layer = img_ph

        # Down sampling
        for i in range(5):
            num_filter = base_filter_num * 2**i
            if i == 0:
                conv1 = layers.conv2d(
                    curr_layer,
                    W=[3, 3,
                       img_ph.get_shape().as_list()[-1], num_filter],
                    b=[num_filter])
            else:
                conv1 = layers.conv2d(curr_layer,
                                      W=[3, 3, num_filter // 2, num_filter],
                                      b=[num_filter])
            relu1 = tf.nn.relu(conv1)
            conv2 = layers.conv2d(relu1,
                                  W=[3, 3, num_filter, num_filter],
                                  b=[num_filter])
            down_layer_list[i] = tf.nn.relu(conv2)
            print('layer: ', i, '\tsize: ',
                  down_layer_list[i].get_shape().as_list())
            if i < 4:
                curr_layer = layers.max_pool(down_layer_list[i])
        curr_layer = down_layer_list[4]

        # Up sampling
        for i in range(3, -1, -1):
            num_filter = base_filter_num * 2**(i + 1)
            deconv_output_shape = tf.shape(down_layer_list[i])
            deconv1 = layers.conv2d_transpose(
                curr_layer,
                W=[3, 3, num_filter // 2, num_filter],
                b=[num_filter // 2],
                stride=2)
            concat1 = layers.crop_and_concat(tf.nn.relu(deconv1),
                                             down_layer_list[i])
            conv1 = layers.conv2d(concat1,
                                  W=[3, 3, num_filter, num_filter // 2],
                                  b=[num_filter // 2],
                                  strides=[1, 1, 1, 1])
            relu1 = tf.nn.relu(conv1)
            conv2 = layers.conv2d(relu1,
                                  W=[3, 3, num_filter // 2, num_filter // 2],
                                  b=[num_filter // 2],
                                  strides=[1, 1, 1, 1])
            relu2 = tf.nn.relu(conv2)
            curr_layer = relu2

        # Output
        conv = layers.conv2d(curr_layer, W=[1, 1, base_filter_num, 3], b=[3])
        relu = tf.nn.relu(conv)
        print('final relu: ', relu.get_shape().as_list())
        return tf.expand_dims(tf.argmax(relu, axis=-1), axis=-1), relu
Пример #8
0
    def __init__(self, path, num_threads, batch_size, learning_rate,
                 input_height, input_width, output_height, output_width,
                 channels):

        input_shape = (batch_size, input_height, input_width, channels)
        output_shape = (batch_size, output_height, output_width, channels)

        self.input_images = tf.placeholder(tf.float32, input_shape,
                                           'input_images')
        self.output_images = tf.placeholder(tf.float32, output_shape,
                                            'output_images')

        kernel_size = (3, 3)
        strides = (2, 2)

        self.gen_images = tf.nn.leaky_relu(
            tf.layers.batch_normalization(
                conv2d_transpose(
                    self.input_images,
                    (batch_size, output_height, output_width, channels),
                    kernel_size, strides, 'gen_images')))

        flatten_output_images = tf.reshape(self.output_images,
                                           [batch_size, -1])
        flatten_gen_images = tf.reshape(self.gen_images, [batch_size, -1])

        self.loss = tf.losses.mean_squared_error(self.output_images,
                                                 self.gen_images)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        self.train_step = optimizer.minimize(self.loss)

        self.sess = tf.Session()
        self.coord = tf.train.Coordinator()
        self.queue = BatchQueue(path, batch_size, num_threads,
                                (input_height, input_width),
                                (output_height, output_width), self.sess,
                                self.coord)
Пример #9
0
    def __init__(self, train_data, val_data, num_class):
        self.num_class = num_class

        re_iter = tf.data.Iterator.from_structure(train_data.output_types,
                                                  train_data.output_shapes)
        self.train_init_op = re_iter.make_initializer(train_data)
        self.val_init_op = re_iter.make_initializer(val_data)
        x, y = re_iter.get_next()
        x_and_offset = tf.map_fn(lambda t: random_crop(t, (320, 480)),
                                 x,
                                 dtype=(tf.int32, tf.int32))
        x = x_and_offset[0]
        self.Y = tf.map_fn(lambda t: fixed_crop(t[0], t[1], (320, 480)),
                           (y, x_and_offset[1]),
                           dtype=tf.int32)

        self.X = tf.cast(x, tf.float32)
        # backbone: VGG16
        # todo: stride param of conv layers.
        f = conv2d(self.X, [3, 3, 3, 64],
                   "conv1",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 64, 64],
                   "conv2",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = tf.nn.max_pool(f,
                           ksize=(1, 2, 2, 1),
                           strides=(1, 2, 2, 1),
                           padding="SAME")

        f = conv2d(f, [3, 3, 64, 128],
                   "conv3",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 128, 128],
                   "conv4",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = tf.nn.max_pool(f,
                           ksize=(1, 2, 2, 1),
                           strides=(1, 2, 2, 1),
                           padding="SAME")

        f = conv2d(f, [3, 3, 128, 256],
                   "conv5",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 256, 256],
                   "conv6",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 256, 256],
                   "conv7",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        p3 = tf.nn.max_pool(f,
                            ksize=(1, 2, 2, 1),
                            strides=(1, 2, 2, 1),
                            padding="SAME")

        f = conv2d(p3, [3, 3, 256, 512],
                   "conv8",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 512, 512],
                   "conv9",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 512, 512],
                   "conv10",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        p4 = tf.nn.max_pool(f,
                            ksize=(1, 2, 2, 1),
                            strides=(1, 2, 2, 1),
                            padding="SAME")

        f = conv2d(p4, [3, 3, 512, 512],
                   "conv11",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 512, 512],
                   "conv12",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        f = conv2d(f, [3, 3, 512, 512],
                   "conv13",
                   activation=tf.nn.relu,
                   padding="SAME",
                   strides=(1, 1, 1, 1))
        p5 = tf.nn.max_pool(f,
                            ksize=(1, 2, 2, 1),
                            strides=(1, 2, 2, 1),
                            padding="SAME")

        conv6 = conv2d(p5, [1, 1, 512, 4096],
                       "conv14",
                       activation=tf.nn.relu,
                       padding="SAME",
                       strides=(1, 1, 1, 1))
        conv7 = conv2d(conv6, [1, 1, 4096, 4096],
                       "conv15",
                       activation=tf.nn.relu,
                       padding='SAME',
                       strides=(1, 1, 1, 1))
        f32 = conv2d(conv7, [1, 1, 4096, num_class],
                     "f32",
                     padding='SAME',
                     strides=(1, 1, 1, 1))  # /32

        f32 = conv2d_transpose(f32, [4, 4, 512, num_class],
                               "convt1",
                               padding='SAME',
                               strides=(1, 2, 2, 1),
                               output_shape=tf.shape(p4),
                               kernel_initializer=bilinear_initializer(
                                   num_class, 512, 4))
        f16 = conv2d_transpose(f32 + p4, [4, 4, 256, 512],
                               "convt2",
                               padding='SAME',
                               strides=(1, 2, 2, 1),
                               output_shape=tf.shape(p3),
                               kernel_initializer=bilinear_initializer(
                                   512, 256, 4))
        output_shape = tf.concat([tf.shape(self.X)[:-1], [num_class]], axis=-1)
        self.logits = f8 = conv2d_transpose(
            f16 + p3, [7, 7, num_class, 256],
            "convt3",
            padding="SAME",
            strides=(1, 8, 8, 1),
            output_shape=output_shape,
            kernel_initializer=bilinear_initializer(256, num_class, 7))
        self.y_pred = tf.cast(tf.argmax(f8, axis=-1), tf.int32)
        self.loss = tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits,
                                                           labels=tf.squeeze(
                                                               self.Y,
                                                               axis=[3])))
        self.pxacc = tf.reduce_mean(
            tf.cast(tf.equal(tf.squeeze(self.Y, axis=[3]), self.y_pred),
                    tf.float32))
        self.train_op = tf.train.AdamOptimizer().minimize(self.loss)

        self.session = get_session(debug=False)
        initialize()