Пример #1
0
class VanillaNode(GenericLayer):
    def __init__(self,
                 input_size,
                 output_size,
                 memory_size,
                 Wxh='gaussian',
                 Whh='gaussian',
                 Why='gaussian',
                 bh='zeros',
                 by='zeros'):
        self.memory_size = memory_size
        x = Input(['x', 'h'], 'x')
        h = Input(['x', 'h'], 'h')
        s = Input(['s'], 's')
        self.Wxh = MWeight(input_size, memory_size, weights=Wxh)
        self.Whh = MWeight(memory_size, memory_size, weights=Whh)
        self.bh = VWeight(memory_size, weights=bh)
        self.Why = MWeight(memory_size, output_size, weights=Why)
        self.by = VWeight(output_size, weights=by)
        self.statenet = ComputationalGraphLayer(
            Tanh(self.Wxh.dot(x) + self.Whh.dot(h) + self.bh))
        self.outputnet = ComputationalGraphLayer(self.Why.dot(s) + self.by)
        self.state = np.zeros(memory_size)
        self.dJdstate = np.zeros(memory_size)

    def forward(self, x_h, update=False):
        self.state = self.statenet.forward(x_h)
        self.y = self.outputnet.forward(self.state)
        return [self.y, self.state]

    def backward(self, dJdy_dJdh, optimizer=None):
        dJds = self.outputnet.backward(dJdy_dJdh[0], optimizer)
        dJdx_dstate = self.statenet.backward(dJds + dJdy_dJdh[1], optimizer)
        return dJdx_dstate
Пример #2
0
    def __init__(self,
                 input_size,
                 output_size,
                 memory_size,
                 window_size,
                 Wxh='gaussian',
                 Whh='gaussian',
                 Why='gaussian',
                 bh='zeros',
                 by='zeros'):
        self.memory_size = memory_size
        self.window_size = window_size
        self.window_step = 0
        x = Input(['x', 'h'], 'x')
        h = Input(['x', 'h'], 'h')
        s = Input(['s'], 's')
        self.statenet = []
        self.outputnet = []
        self.state = []
        self.dJdh = []

        self.Wxh = SharedWeights(Wxh, input_size, memory_size)
        self.Whh = SharedWeights(Whh, memory_size, memory_size)
        self.Why = SharedWeights(Why, memory_size, output_size)
        self.bh = SharedWeights(bh, 1, memory_size)
        self.by = SharedWeights(by, 1, output_size)

        for ind in range(window_size):
            cWxh = MWeight(input_size, memory_size, weights=self.Wxh)
            cWhh = MWeight(memory_size, memory_size, weights=self.Whh)
            cbh = VWeight(memory_size, weights=self.bh)
            cWhy = MWeight(memory_size, output_size, weights=self.Why)
            cby = VWeight(output_size, weights=self.by)
            self.statenet.append(
                ComputationalGraphLayer(Tanh(cWxh * x + cWhh * h + cbh)))
            self.outputnet.append(
                ComputationalGraphLayer(
                    # Softmax(cWhy*s+cby)
                    cWhy * s + cby))
            self.state.append(np.zeros(memory_size))
            self.dJdh.append(np.zeros(memory_size))
Пример #3
0
 def __init__(self,
              input_size,
              output_size,
              memory_size,
              Wxh='gaussian',
              Whh='gaussian',
              Why='gaussian',
              bh='zeros',
              by='zeros'):
     self.memory_size = memory_size
     x = Input(['x', 'h'], 'x')
     h = Input(['x', 'h'], 'h')
     s = Input(['s'], 's')
     self.Wxh = MWeight(input_size, memory_size, weights=Wxh)
     self.Whh = MWeight(memory_size, memory_size, weights=Whh)
     self.bh = VWeight(memory_size, weights=bh)
     self.Why = MWeight(memory_size, output_size, weights=Why)
     self.by = VWeight(output_size, weights=by)
     self.statenet = ComputationalGraphLayer(
         Tanh(self.Wxh.dot(x) + self.Whh.dot(h) + self.bh))
     self.outputnet = ComputationalGraphLayer(self.Why.dot(s) + self.by)
     self.state = np.zeros(memory_size)
     self.dJdstate = np.zeros(memory_size)