Пример #1
0
    def encoder(self, inputs):
        # convolutional layer
        conv1 = ConvLayer(input_filters=tf.cast(inputs.shape[3], tf.int32), output_filters=8, act=tf.nn.relu,
                          kernel_size=3, kernel_stride=1, kernel_padding="SAME")
        conv1_act = conv1.__call__(inputs)
        print(conv1_act.shape)
        # convolutional and pooling layer
        conv_pool1 = ConvPoolLayer(input_filters=8, output_filters=8, act=tf.nn.relu,
                                   kernel_size=3, kernel_stride=1, kernel_padding="SAME",
                                   pool_size=3, pool_stride=2, pool_padding="SAME")
        conv_pool1_act = conv_pool1.__call__(conv1_act)
        print(conv_pool1_act.shape)
        # convolutional layer
        conv2 = ConvLayer(input_filters=8, output_filters=16, act=tf.nn.relu,
                          kernel_size=3, kernel_stride=1, kernel_padding="SAME")
        conv2_act = conv2.__call__(conv_pool1_act)
        print(conv2_act.shape)
        # convolutional and pooling layer
        conv_pool2 = ConvPoolLayer(input_filters=16, output_filters=16, act=tf.nn.relu,
                                   kernel_size=3, kernel_stride=1, kernel_padding="SAME",
                                   pool_size=3, pool_stride=2, pool_padding="SAME")
        conv_pool2_act = conv_pool2.__call__(conv2_act)
        print(conv_pool2_act.shape)
        
        conv3 = ConvLayer(input_filters=16, output_filters=32, act=tf.nn.relu,
                          kernel_size=3, kernel_stride=1, kernel_padding="SAME")
        conv3_act = conv3.__call__(conv_pool2_act)
        print(conv3_act.shape)
        
        conv_pool3 = ConvPoolLayer(input_filters=32, output_filters=32, act=tf.nn.relu,
                                   kernel_size=3, kernel_stride=1, kernel_padding="SAME",
                                   pool_size=3, pool_stride=2, pool_padding="SAME")
        conv_pool3_act = conv_pool3.__call__(conv3_act)
        print(conv_pool3_act.shape)
        
        last_conv_dims = conv_pool3_act.shape[1:]
        # make output of pooling flatten

        flatten = tf.reshape(conv_pool3_act, [-1,last_conv_dims[0]*last_conv_dims[1]*last_conv_dims[2]])
        print(flatten.shape)
        weights_encoder = normal_initializer((tf.cast(flatten.shape[1], tf.int32), FLAGS.code_size))
        bias_encoder = zero_initializer((FLAGS.code_size))
        # apply fully connected layer

        dense = tf.matmul(flatten, weights_encoder) + bias_encoder
        print(dense.shape)

        return dense, last_conv_dims
Пример #2
0
    def encoder(self, inputs):

        # Build Convolutional Part of Encoder
        # Put sequential layers:
        #       ConvLayer1 ==> ConvPoolLayer1 ==> ConvLayer2 ==> ConvPoolLayer2 ==> ConvLayer3 ==> ConvPoolLayer3
        # Settings of layers:
        # For all ConvLayers: filter size = 3, filter stride = 1, padding type = SAME
        # For all ConvPoolLayers:
        #   Conv    : filter size = 3, filter stride = 1, padding type = SAME
        #   Pooling :   pool size = 3,   pool stride = 2, padding type = SAME
        # Number of Filters:
        #       num_channel defined in FLAGS (input) ==> 8 ==> 8 ==> 16 ==> 16 ==> 32 ==> 32

        # convolutional layer
        conv1_class = ConvLayer(input_filters=FLAGS.num_channel,
                                output_filters=8,
                                act=tf.nn.relu,
                                kernel_size=3,
                                kernel_stride=1,
                                kernel_padding='SAME')
        conv1 = conv1_class(inputs=inputs)
        print(conv1.shape)
        # convolutional and pooling layer
        conv_pool1_class = ConvPoolLayer(input_filters=8,
                                         output_filters=8,
                                         act=tf.nn.relu,
                                         kernel_size=3,
                                         kernel_stride=1,
                                         kernel_padding='SAME',
                                         pool_size=3,
                                         pool_stride=2,
                                         pool_padding='SAME')
        conv_pool1 = conv_pool1_class(inputs=conv1)
        print(conv_pool1.shape)
        # convolutional layer
        conv2_class = ConvLayer(input_filters=8,
                                output_filters=16,
                                act=tf.nn.relu,
                                kernel_size=3,
                                kernel_stride=1,
                                kernel_padding='SAME')
        conv2 = conv2_class(inputs=conv_pool1)
        print(conv2.shape)
        # convolutional and pooling layer
        conv_pool2_class = ConvPoolLayer(input_filters=16,
                                         output_filters=16,
                                         act=tf.nn.relu,
                                         kernel_size=3,
                                         kernel_stride=1,
                                         kernel_padding='SAME',
                                         pool_size=3,
                                         pool_stride=2,
                                         pool_padding='SAME')
        conv_pool2 = conv_pool2_class(inputs=conv2)
        print(conv_pool2.shape)

        conv3_class = ConvLayer(input_filters=16,
                                output_filters=32,
                                act=tf.nn.relu,
                                kernel_size=3,
                                kernel_stride=1,
                                kernel_padding='SAME')
        conv3 = conv3_class(inputs=conv_pool2)
        print(conv3.shape)

        conv_pool3_class = ConvPoolLayer(input_filters=32,
                                         output_filters=32,
                                         act=tf.nn.relu,
                                         kernel_size=3,
                                         kernel_stride=1,
                                         kernel_padding='SAME',
                                         pool_size=3,
                                         pool_stride=2,
                                         pool_padding='SAME')
        conv_pool3 = conv_pool3_class(inputs=conv3)
        print(conv_pool3.shape)

        # Make Output Flatten and Apply Transformation
        # Num of features for dense is defined by code_size in FLAG

        # make output of pooling flatten
        WholeShape = tf.shape(conv_pool3)
        NumSamples = WholeShape[0]
        last_conv_dims = tf.constant(value=(4, 4, 32),
                                     dtype=tf.int32,
                                     shape=(3, ))  #WholeShape[1:]
        FlattedShape = tf.reduce_prod(last_conv_dims)

        flatten = tf.reshape(conv_pool3, shape=[NumSamples, FlattedShape])
        print(flatten.shape)

        # apply fully connected layer
        W_Trans = normal_initializer(shape=[FlattedShape, FLAGS.code_size])
        B_Trans = zero_initializer(shape=[FLAGS.code_size])
        dense = tf.nn.xw_plus_b(flatten, W_Trans, B_Trans)
        print(dense.shape)

        return dense, last_conv_dims
Пример #3
0
    def __init__(self, config):
        ModelBase.__init__(self)

        self.config = config
        self.verbose = self.config['verbose']
        self.name = 'alexnet'
        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']
        n_softmax_out = config['n_softmax_out']
        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        # 'rand' is a random array used for random cropping/mirroring of data
        x = T.ftensor4('x')
        y = T.lvector('y')
        rand = T.fvector('rand')
        lr = T.scalar('lr')

        if self.verbose: print 'AlexNet 2/16'
        self.layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x,
                                   image_shape=(3, 256, 256, batch_size),
                                   cropsize=227,
                                   rand=rand,
                                   mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(input=layer1_input,
                                        image_shape=(3, 227, 227, batch_size),
                                        filter_shape=(3, 11, 11, 96),
                                        convstride=4,
                                        padsize=0,
                                        group=1,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.0,
                                        lrn=True,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                        image_shape=(96, 27, 27, batch_size),
                                        filter_shape=(96, 5, 5, 256),
                                        convstride=1,
                                        padsize=2,
                                        group=2,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.1,
                                        lrn=True,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output,
                                        image_shape=(256, 13, 13, batch_size),
                                        filter_shape=(256, 3, 3, 384),
                                        convstride=1,
                                        padsize=1,
                                        group=1,
                                        poolsize=1,
                                        poolstride=0,
                                        bias_init=0.0,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 384),
                                        convstride=1,
                                        padsize=1,
                                        group=2,
                                        poolsize=1,
                                        poolstride=0,
                                        bias_init=0.1,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 256),
                                        convstride=1,
                                        padsize=1,
                                        group=2,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.0,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = FCLayer(input=fc_layer6_input,
                            n_in=9216,
                            n_out=4096,
                            verbose=self.verbose)
        self.layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output,
                                      n_in=4096,
                                      n_out=4096,
                                      verbose=self.verbose)

        fc_layer7 = FCLayer(input=dropout_layer6.output,
                            n_in=4096,
                            n_out=4096,
                            verbose=self.verbose)
        self.layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        dropout_layer7 = DropoutLayer(fc_layer7.output,
                                      n_in=4096,
                                      n_out=4096,
                                      verbose=self.verbose)

        softmax_layer8 = SoftmaxLayer(input=dropout_layer7.output,
                                      n_in=4096,
                                      n_out=n_softmax_out,
                                      verbose=self.verbose)
        self.layers.append(softmax_layer8)
        params += softmax_layer8.params
        weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################
        self.p_y_given_x = softmax_layer8.p_y_given_x
        self.y_pred = softmax_layer8.y_pred

        self.output = self.p_y_given_x

        self.cost = softmax_layer8.negative_log_likelihood(y)
        self.error = softmax_layer8.errors(y)
        if n_softmax_out < 5:
            self.error_top_5 = softmax_layer8.errors_top_x(y, n_softmax_out)
        else:
            self.error_top_5 = softmax_layer8.errors_top_x(y, 5)
        self.params = params

        # inputs
        self.x = x
        self.y = y
        self.rand = rand
        self.lr = lr
        self.shared_x = theano.shared(
            np.zeros(
                (3, config['input_width'], config['input_height'],
                 config['file_batch_size']),  # for loading large batch
                dtype=theano.config.floatX),
            borrow=True)

        self.shared_y = theano.shared(np.zeros((config['file_batch_size'], ),
                                               dtype=int),
                                      borrow=True)
        self.shared_lr = theano.shared(np.float32(config['learning_rate']))

        # training related
        self.base_lr = np.float32(config['learning_rate'])
        self.step_idx = 0
        self.mu = config['momentum']  # def: 0.9 # momentum
        self.eta = config['weight_decay']  #0.0002 # weight decay
        self.weight_types = weight_types
        self.batch_size = batch_size

        self.grads = T.grad(self.cost, self.params)

        subb_ind = T.iscalar('subb')  # sub batch index
        #print self.shared_x[:,:,:,subb_ind*self.batch_size:(subb_ind+1)*self.batch_size].shape.eval()
        self.subb_ind = subb_ind
        self.shared_x_slice = self.shared_x[:, :, :, subb_ind *
                                            self.batch_size:(subb_ind + 1) *
                                            self.batch_size]
        self.shared_y_slice = self.shared_y[subb_ind *
                                            self.batch_size:(subb_ind + 1) *
                                            self.batch_size]
    def __init__(self, config):

        self.config = config

        batch_size = config['batch_size']
        num_seq = config['num_seq']
        lib_conv = config['lib_conv']

        # ##################### BUILD NETWORK ##########################
        img_scale_x = config['img_scale_x']
        img_scale_y = config['img_scale_y']
        reg_scale_x = config['reg_scale_x']
        reg_scale_y = config['reg_scale_y']
        use_noise = T.fscalar('use_noise')
        input_dim = config['input_dim']
        print '... building the model'
        self.layers = []
        params = []
        weight_types = []
        x_temporal = T.ftensor4('x')

        conv1_temporal = ConvPoolLayer(input=x_temporal,
                                       image_shape=(input_dim, img_scale_x,
                                                    img_scale_y, batch_size),
                                       filter_shape=(input_dim, 7, 7, 64),
                                       convstride=2,
                                       padsize=3,
                                       group=1,
                                       poolsize=3,
                                       poolstride=2,
                                       bias_init=0.0,
                                       lrn=False,
                                       Bn=True,
                                       lib_conv=lib_conv,
                                       caffe_style=True,
                                       poolpadsize=(1, 1))
        self.layers.append(conv1_temporal)

        conv_temporal_2_reduce = ConvPoolLayer(
            input=conv1_temporal.output,
            image_shape=(64, 56, 56, batch_size),
            filter_shape=(64, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=0,
            bias_init=0.0,
            lrn=False,
            Bn=True,
            lib_conv=lib_conv,
        )
        self.layers.append(conv_temporal_2_reduce)
        #
        convpool_temporal_2 = ConvPoolLayer(
            input=conv_temporal_2_reduce.output,
            image_shape=(64, 56, 56, batch_size),
            filter_shape=(64, 3, 3, 192),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=3,
            poolstride=2,  #poolpadsize=(1,1),
            bias_init=0.0,
            lrn=False,
            Bn=True,
            lib_conv=lib_conv,
            caffe_style=True,
            poolpadsize=(1, 1))
        self.layers.append(convpool_temporal_2)

        ##############----3a---#########

        inception_temporal_3a_1x1 = ConvPoolLayer(
            input=convpool_temporal_2.output,
            image_shape=(192, 28, 28, batch_size),
            filter_shape=(192, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_1x1)
        #################
        inception_temporal_3a_3x3_reduce = ConvPoolLayer(
            input=convpool_temporal_2.output,
            image_shape=(192, 28, 28, batch_size),
            filter_shape=(192, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_3x3_reduce)
        inception_temporal_3a_3x3 = ConvPoolLayer(
            input=inception_temporal_3a_3x3_reduce.output,
            image_shape=(64, 28, 28, batch_size),
            filter_shape=(64, 3, 3, 64),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_3x3)
        ############
        inception_temporal_3a_double_3x3_reduce = ConvPoolLayer(
            input=convpool_temporal_2.output,
            image_shape=(192, 28, 28, batch_size),
            filter_shape=(192, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_double_3x3_reduce)
        inception_temporal_3a_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_3a_double_3x3_reduce.output,
            image_shape=(64, 28, 28, batch_size),
            filter_shape=(64, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_double_3x3_1)
        inception_temporal_3a_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_3a_double_3x3_1.output,
            image_shape=(96, 28, 28, batch_size),
            filter_shape=(96, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_double_3x3_2)
        ##############
        inception_temporal_3a_pool = PoolLayer(
            input=convpool_temporal_2.output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_3a_pool_proj = ConvPoolLayer(
            input=inception_temporal_3a_pool.output,
            image_shape=(192, 28, 28, batch_size),
            filter_shape=(192, 1, 1, 32),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3a_pool_proj)

        ####################
        inception_temporal_3a_output = T.concatenate([
            inception_temporal_3a_1x1.output, inception_temporal_3a_3x3.output,
            inception_temporal_3a_double_3x3_2.output,
            inception_temporal_3a_pool_proj.output
        ],
                                                     axis=0)

        ##############----3b---#########
        inception_temporal_3b_1x1 = ConvPoolLayer(
            input=inception_temporal_3a_output,
            image_shape=(256, 28, 28, batch_size),
            filter_shape=(256, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_1x1)
        #######################
        inception_temporal_3b_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3a_output,
            image_shape=(256, 28, 28, batch_size),
            filter_shape=(256, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_3x3_reduce)
        inception_temporal_3b_3x3 = ConvPoolLayer(
            input=inception_temporal_3b_3x3_reduce.output,
            image_shape=(64, 28, 28, batch_size),
            filter_shape=(64, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_3x3)

        ############
        inception_temporal_3b_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3a_output,
            image_shape=(256, 28, 28, batch_size),
            filter_shape=(256, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_double_3x3_reduce)
        inception_temporal_3b_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_3b_double_3x3_reduce.output,
            image_shape=(64, 28, 28, batch_size),
            filter_shape=(64, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_double_3x3_1)
        inception_temporal_3b_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_3b_double_3x3_1.output,
            image_shape=(96, 28, 28, batch_size),
            filter_shape=(96, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_double_3x3_2)
        ##############
        inception_temporal_3b_pool = PoolLayer(
            input=inception_temporal_3a_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_3b_pool_proj = ConvPoolLayer(
            input=inception_temporal_3b_pool.output,
            image_shape=(256, 28, 28, batch_size),
            filter_shape=(256, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3b_pool_proj)
        ###############33

        inception_temporal_3b_output = T.concatenate([
            inception_temporal_3b_1x1.output, inception_temporal_3b_3x3.output,
            inception_temporal_3b_double_3x3_2.output,
            inception_temporal_3b_pool_proj.output
        ],
                                                     axis=0)

        ##############----3c---#########
        inception_temporal_3c_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3b_output,
            image_shape=(320, 28, 28, batch_size),
            filter_shape=(320, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3c_3x3_reduce)
        inception_temporal_3c_3x3 = ConvPoolLayer(
            input=inception_temporal_3c_3x3_reduce.output,
            image_shape=(128, 28, 28, batch_size),
            filter_shape=(128, 3, 3, 160),
            convstride=2,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3c_3x3)
        ############
        inception_temporal_3c_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3b_output,
            image_shape=(320, 28, 28, batch_size),
            filter_shape=(320, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3c_double_3x3_reduce)
        inception_temporal_3c_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_3c_double_3x3_reduce.output,
            image_shape=(64, 28, 28, batch_size),
            filter_shape=(64, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3c_double_3x3_1)
        inception_temporal_3c_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_3c_double_3x3_1.output,
            image_shape=(96, 28, 28, batch_size),
            filter_shape=(96, 3, 3, 96),
            convstride=2,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_3c_double_3x3_2)
        ##############
        inception_temporal_3c_pool = PoolLayer(
            input=inception_temporal_3b_output,
            poolsize=3,
            poolstride=2,
            lib_conv=lib_conv,
            caffe_style=True,
            poolpad=1)
        # inception_temporal_3c_pool=PoolLayer(input=inception_temporal_3b_output,caffe_style=True,poolsize=3,poolpad=1,poolstride=2,lib_conv=lib_conv)
        #################################
        inception_temporal_3c_output = T.concatenate([
            inception_temporal_3c_3x3.output,
            inception_temporal_3c_double_3x3_2.output,
            inception_temporal_3c_pool.output
        ],
                                                     axis=0)

        ################################----4a------##########
        inception_temporal_4a_1x1 = ConvPoolLayer(
            input=inception_temporal_3c_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 224),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_1x1)
        #################
        inception_temporal_4a_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3c_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 64),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_3x3_reduce)
        inception_temporal_4a_3x3 = ConvPoolLayer(
            input=inception_temporal_4a_3x3_reduce.output,
            image_shape=(64, 14, 14, batch_size),
            filter_shape=(64, 3, 3, 96),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_3x3)
        ############
        inception_temporal_4a_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_3c_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 96),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_double_3x3_reduce)
        inception_temporal_4a_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_4a_double_3x3_reduce.output,
            image_shape=(96, 14, 14, batch_size),
            filter_shape=(96, 3, 3, 128),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_double_3x3_1)
        inception_temporal_4a_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_4a_double_3x3_1.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 128),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_double_3x3_2)
        ##############
        inception_temporal_4a_pool = PoolLayer(
            input=inception_temporal_3c_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_4a_pool_proj = ConvPoolLayer(
            input=inception_temporal_4a_pool.output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4a_pool_proj)

        ####################
        inception_temporal_4a_output = T.concatenate([
            inception_temporal_4a_1x1.output, inception_temporal_4a_3x3.output,
            inception_temporal_4a_double_3x3_2.output,
            inception_temporal_4a_pool_proj.output
        ],
                                                     axis=0)
        #####################----4b------#################
        inception_temporal_4b_1x1 = ConvPoolLayer(
            input=inception_temporal_4a_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 192),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_1x1)
        #################
        inception_temporal_4b_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4a_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 96),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_3x3_reduce)
        inception_temporal_4b_3x3 = ConvPoolLayer(
            input=inception_temporal_4b_3x3_reduce.output,
            image_shape=(96, 14, 14, batch_size),
            filter_shape=(96, 3, 3, 128),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_3x3)
        ############
        inception_temporal_4b_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4a_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 96),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_double_3x3_reduce)
        inception_temporal_4b_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_4b_double_3x3_reduce.output,
            image_shape=(96, 14, 14, batch_size),
            filter_shape=(96, 3, 3, 128),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_double_3x3_1)
        inception_temporal_4b_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_4b_double_3x3_1.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 128),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_double_3x3_2)
        ##############
        inception_temporal_4b_pool = PoolLayer(
            input=inception_temporal_4a_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_4b_pool_proj = ConvPoolLayer(
            input=inception_temporal_4b_pool.output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4b_pool_proj)

        ####################
        inception_temporal_4b_output = T.concatenate([
            inception_temporal_4b_1x1.output, inception_temporal_4b_3x3.output,
            inception_temporal_4b_double_3x3_2.output,
            inception_temporal_4b_pool_proj.output
        ],
                                                     axis=0)
        #####################----4c------#################
        inception_temporal_4c_1x1 = ConvPoolLayer(
            input=inception_temporal_4b_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 160),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_1x1)
        #################
        inception_temporal_4c_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4b_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_3x3_reduce)
        inception_temporal_4c_3x3 = ConvPoolLayer(
            input=inception_temporal_4c_3x3_reduce.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 160),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_3x3)
        ############
        inception_temporal_4c_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4b_output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_double_3x3_reduce)
        inception_temporal_4c_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_4c_double_3x3_reduce.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 160),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_double_3x3_1)
        inception_temporal_4c_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_4c_double_3x3_1.output,
            image_shape=(160, 14, 14, batch_size),
            filter_shape=(160, 3, 3, 160),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_double_3x3_2)
        ##############
        inception_temporal_4c_pool = PoolLayer(
            input=inception_temporal_4b_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_4c_pool_proj = ConvPoolLayer(
            input=inception_temporal_4c_pool.output,
            image_shape=(576, 14, 14, batch_size),
            filter_shape=(576, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4c_pool_proj)

        ####################
        inception_temporal_4c_output = T.concatenate([
            inception_temporal_4c_1x1.output, inception_temporal_4c_3x3.output,
            inception_temporal_4c_double_3x3_2.output,
            inception_temporal_4c_pool_proj.output
        ],
                                                     axis=0)

        #####################----4d------#################
        inception_temporal_4d_1x1 = ConvPoolLayer(
            input=inception_temporal_4c_output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 96),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_1x1)
        #################
        inception_temporal_4d_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4c_output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_3x3_reduce)
        inception_temporal_4d_3x3 = ConvPoolLayer(
            input=inception_temporal_4d_3x3_reduce.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 192),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_3x3)
        ############
        inception_temporal_4d_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4c_output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 160),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_double_3x3_reduce)
        inception_temporal_4d_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_4d_double_3x3_reduce.output,
            image_shape=(160, 14, 14, batch_size),
            filter_shape=(160, 3, 3, 192),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_double_3x3_1)
        inception_temporal_4d_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_4d_double_3x3_1.output,
            image_shape=(192, 14, 14, batch_size),
            filter_shape=(192, 3, 3, 192),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_double_3x3_2)
        ##############
        inception_temporal_4d_pool = PoolLayer(
            input=inception_temporal_4c_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_4d_pool_proj = ConvPoolLayer(
            input=inception_temporal_4d_pool.output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4d_pool_proj)

        ####################
        inception_temporal_4d_output = T.concatenate([
            inception_temporal_4d_1x1.output, inception_temporal_4d_3x3.output,
            inception_temporal_4d_double_3x3_2.output,
            inception_temporal_4d_pool_proj.output
        ],
                                                     axis=0)

        ##############----4e---#########

        inception_temporal_4e_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4d_output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4e_3x3_reduce)
        inception_temporal_4e_3x3 = ConvPoolLayer(
            input=inception_temporal_4e_3x3_reduce.output,
            image_shape=(128, 14, 14, batch_size),
            filter_shape=(128, 3, 3, 192),
            convstride=2,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4e_3x3)
        ############
        inception_temporal_4e_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4d_output,
            image_shape=(608, 14, 14, batch_size),
            filter_shape=(608, 1, 1, 192),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4e_double_3x3_reduce)
        inception_temporal_4e_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_4e_double_3x3_reduce.output,
            image_shape=(192, 14, 14, batch_size),
            filter_shape=(192, 3, 3, 256),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4e_double_3x3_1)
        inception_temporal_4e_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_4e_double_3x3_1.output,
            image_shape=(256, 14, 14, batch_size),
            filter_shape=(256, 3, 3, 256),
            convstride=2,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_4e_double_3x3_2)
        ##############
        inception_temporal_4e_pool = PoolLayer(
            input=inception_temporal_4d_output,
            poolsize=3,
            poolstride=2,
            lib_conv=lib_conv,
            caffe_style=True,
            poolpad=1)
        #################################
        inception_temporal_4e_output = T.concatenate([
            inception_temporal_4e_3x3.output,
            inception_temporal_4e_double_3x3_2.output,
            inception_temporal_4e_pool.output
        ],
                                                     axis=0)
        ################################----5a------##########
        inception_temporal_5a_1x1 = ConvPoolLayer(
            input=inception_temporal_4e_output,
            image_shape=(1056, 7, 7, batch_size),
            filter_shape=(1056, 1, 1, 352),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_1x1)
        #################
        inception_temporal_5a_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4e_output,
            image_shape=(1056, 7, 7, batch_size),
            filter_shape=(1056, 1, 1, 192),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_3x3_reduce)
        inception_temporal_5a_3x3 = ConvPoolLayer(
            input=inception_temporal_5a_3x3_reduce.output,
            image_shape=(192, 7, 7, batch_size),
            filter_shape=(192, 3, 3, 320),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_3x3)
        ############
        inception_temporal_5a_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_4e_output,
            image_shape=(1056, 7, 7, batch_size),
            filter_shape=(1056, 1, 1, 160),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_double_3x3_reduce)
        inception_temporal_5a_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_5a_double_3x3_reduce.output,
            image_shape=(160, 7, 7, batch_size),
            filter_shape=(160, 3, 3, 224),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_double_3x3_1)
        inception_temporal_5a_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_5a_double_3x3_1.output,
            image_shape=(224, 7, 7, batch_size),
            filter_shape=(224, 3, 3, 224),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_double_3x3_2)
        ##############
        inception_temporal_5a_pool = PoolLayer(
            input=inception_temporal_4e_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            poolmode='average_inc_pad',
            lib_conv=lib_conv)
        inception_temporal_5a_pool_proj = ConvPoolLayer(
            input=inception_temporal_5a_pool.output,
            image_shape=(1056, 7, 7, batch_size),
            filter_shape=(1056, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5a_pool_proj)

        ####################
        inception_temporal_5a_output = T.concatenate([
            inception_temporal_5a_1x1.output, inception_temporal_5a_3x3.output,
            inception_temporal_5a_double_3x3_2.output,
            inception_temporal_5a_pool_proj.output
        ],
                                                     axis=0)

        inception_temporal_5a_output_1 = inception_temporal_5a_output
        ################################----5b------##########
        inception_temporal_5b_1x1 = ConvPoolLayer(
            input=inception_temporal_5a_output,
            image_shape=(1024, 7, 7, batch_size),
            filter_shape=(1024, 1, 1, 352),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_1x1)
        #################
        inception_temporal_5b_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_5a_output,
            image_shape=(1024, 7, 7, batch_size),
            filter_shape=(1024, 1, 1, 192),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_3x3_reduce)
        inception_temporal_5b_3x3 = ConvPoolLayer(
            input=inception_temporal_5b_3x3_reduce.output,
            image_shape=(192, 7, 7, batch_size),
            filter_shape=(192, 3, 3, 320),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_3x3)
        ############
        inception_temporal_5b_double_3x3_reduce = ConvPoolLayer(
            input=inception_temporal_5a_output,
            image_shape=(1024, 7, 7, batch_size),
            filter_shape=(1024, 1, 1, 192),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_double_3x3_reduce)
        inception_temporal_5b_double_3x3_1 = ConvPoolLayer(
            input=inception_temporal_5b_double_3x3_reduce.output,
            image_shape=(192, 7, 7, batch_size),
            filter_shape=(192, 3, 3, 224),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_double_3x3_1)
        inception_temporal_5b_double_3x3_2 = ConvPoolLayer(
            input=inception_temporal_5b_double_3x3_1.output,
            image_shape=(224, 7, 7, batch_size),
            filter_shape=(224, 3, 3, 224),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_double_3x3_2)
        ##############
        inception_temporal_5b_pool = PoolLayer(
            input=inception_temporal_5a_output,
            poolsize=3,
            poolstride=1,
            poolpad=1,
            lib_conv=lib_conv)
        inception_temporal_5b_pool_proj = ConvPoolLayer(
            input=inception_temporal_5b_pool.output,
            image_shape=(1024, 7, 7, batch_size),
            filter_shape=(1024, 1, 1, 128),
            convstride=1,
            padsize=0,
            group=1,
            poolsize=1,
            poolstride=1,
            bias_init=0.0,
            lib_conv=lib_conv,
            Bn=True)
        self.layers.append(inception_temporal_5b_pool_proj)
        #params += inception_temporal_5b_pool_proj.params
        # weight_types += inception_temporal_5b_pool_proj.weight_type

        ####################
        dummy_fea = T.zeros([1024, 1, num_seq, batch_size / num_seq])
        pool5_fea_tmp = T.reshape(
            inception_temporal_5a_output_1,
            [1024, reg_scale_x * reg_scale_y, num_seq, batch_size / num_seq])
        pool5_fea_tmp = T.concatenate([pool5_fea_tmp, dummy_fea], axis=1)
        pool5_fea_tmp = pool5_fea_tmp.dimshuffle(1, 3, 2, 0)

        self.fea_tmp = pool5_fea_tmp
        # self.fea_lstm_tmp = pool5_fea_tmp
        self.params = params
        self.x_temporal = x_temporal
        self.weight_types = weight_types
        self.batch_size = batch_size
        self.num_seq = num_seq
        self.use_noise = use_noise
Пример #5
0
    def encoder(self, inputs):
        #############################################################################################################
        # TODO: Build Convolutional Part of Encoder                                                                 #
        # Put sequential layers:                                                                                    #
        #       ConvLayer1 ==> ConvPoolLayer1 ==> ConvLayer2 ==> ConvPoolLayer2 ==> ConvLayer3 ==> ConvPoolLayer3   #
        # Settings of layers:                                                                                       #
        # For all ConvLayers: filter size = 3, filter stride = 1, padding type = SAME                               #
        # For all ConvPoolLayers:                                                                                   #
        #   Conv    : filter size = 3, filter stride = 1, padding type = SAME                                       #
        #   Pooling :   pool size = 3,   pool stride = 2, padding type = SAME                                       #
        # Number of Filters:                                                                                        #
        #       num_channel defined in FLAGS (input) ==> 8 ==> 8 ==> 16 ==> 16 ==> 32 ==> 32                        #
        #############################################################################################################
        relu = tf.nn.relu
        # convolutional layer
        cl1 = ConvLayer(FLAGS.num_channel, 8, relu, 3, 1, 'SAME')
        conv1 = cl1(inputs)
        print(conv1.shape)
        # convolutional and pooling layer
        cl2 = ConvPoolLayer(8, 8, relu, 3, 1, 'SAME', 3, 2, 'SAME')
        conv_pool1 = cl2(conv1)
        print(conv_pool1.shape)
        # convolutional layer
        cl3 = ConvLayer(8, 16, relu, 3, 1, 'SAME')
        conv2 = cl3(conv_pool1)
        print(conv2.shape)
        # convolutional and pooling layer
        cl4 = ConvPoolLayer(16, 16, relu, 3, 1, 'SAME', 3, 2, 'SAME')
        conv_pool2 = cl4(conv2)
        print(conv_pool2.shape)

        cl5 = ConvLayer(16, 32, relu, 3, 1, 'SAME')
        conv3 = cl5(conv_pool2)
        print(conv3.shape)

        cl6 = ConvPoolLayer(32, 32, tf.nn.relu, 3, 1, 'SAME', 3, 2, 'SAME')
        conv_pool3 = cl6(conv3)
        print(conv_pool3.shape)
        ##########################################################################
        #                           END OF YOUR CODE                             #
        ##########################################################################

        ##########################################################################
        # TODO: Make Output Flatten and Apply Transformation                     #
        # Please save the last three dimensions of output of the above code      #
        # Save these numbers in a variable called last_conv_dims                 #
        # Multiply all these dimensions to find num of features if flatten       #
        # Use tf.reshape to make a tensor flat                                   #
        # Define some weights and bias and apply linear transformation           #
        # Use normal and zero initializer for weights and bias respectively      #
        # Please store output of transformation in a variable called dense       #
        # Num of features for dense is defined by code_size in FLAG              #
        # Note that there is no need apply any kind of activation function       #
        ##########################################################################

        # make output of pooling flatten
        dim = np.prod(conv_pool3.shape[1:])
        flatten = tf.reshape(conv_pool3, [-1, dim])
        print(flatten.shape)

        # apply fully connected layer
        W_fc = normal_initializer(shape=(dim.__int__(), FLAGS.code_size))
        B_fc = zero_initializer(shape=FLAGS.code_size)
        dense = tf.matmul(flatten, W_fc) + B_fc
        print(dense.shape)

        ##########################################################################
        #                           END OF YOUR CODE                             #
        ##########################################################################

        last_conv_dims = conv_pool3.shape[1:]
        return dense, last_conv_dims
    def encoder(self, inputs):

        #############################################################################################################
        # TODO: Build Convolutional Part of Encoder                                                                 #
        # Put sequential layers:                                                                                    #
        #       ConvLayer1 ==> ConvPoolLayer1 ==> ConvLayer2 ==> ConvPoolLayer2 ==> ConvLayer3 ==> ConvPoolLayer3   #
        # Settings of layers:                                                                                       #
        # For all ConvLayers: filter size = 3, filter stride = 1, padding type = SAME                               #
        # For all ConvPoolLayers:                                                                                   #
        #   Conv    : filter size = 3, filter stride = 1, padding type = SAME                                       #
        #   Pooling :   pool size = 3,   pool stride = 2, padding type = SAME                                       #
        # Number of Filters:                                                                                        #
        #       num_channel defined in FLAGS (input) ==> 8 ==> 8 ==> 16 ==> 16 ==> 32 ==> 32                        #
        #############################################################################################################
        # convolutional layer
        relu = tf.nn.relu
        conv1 = ConvLayer(input_filters=FLAGS.num_channel,
                          output_filters=8,
                          act=relu,
                          kernel_size=3,
                          kernel_stride=1,
                          kernel_padding='SAME')(inputs)
        print(conv1.shape)
        # convolutional and pooling layer
        conv_pool1 = ConvPoolLayer(input_filters=8,
                                   output_filters=8,
                                   act=relu,
                                   kernel_size=3,
                                   kernel_stride=1,
                                   kernel_padding='SAME',
                                   pool_size=3,
                                   pool_stride=2,
                                   pool_padding='SAME')(conv1)
        print(conv_pool1.shape)
        # convolutional layer
        conv2 = ConvLayer(input_filters=8,
                          output_filters=16,
                          act=relu,
                          kernel_size=3,
                          kernel_stride=1,
                          kernel_padding='SAME')(conv_pool1)
        print(conv2.shape)
        # convolutional and pooling layer
        conv_pool2 = ConvPoolLayer(input_filters=16,
                                   output_filters=16,
                                   act=relu,
                                   kernel_size=3,
                                   kernel_stride=1,
                                   kernel_padding='SAME',
                                   pool_size=3,
                                   pool_stride=2,
                                   pool_padding='SAME')(conv2)
        print(conv_pool2.shape)

        conv3 = ConvLayer(input_filters=16,
                          output_filters=32,
                          act=relu,
                          kernel_size=3,
                          kernel_stride=1,
                          kernel_padding='SAME')(conv_pool2)
        print(conv3.shape)

        conv_pool3 = ConvPoolLayer(input_filters=32,
                                   output_filters=32,
                                   act=relu,
                                   kernel_size=3,
                                   kernel_stride=1,
                                   kernel_padding='SAME',
                                   pool_size=3,
                                   pool_stride=2,
                                   pool_padding='SAME')(conv3)
        print(conv_pool3.shape)
        ##########################################################################
        #                           END OF YOUR CODE                             #
        ##########################################################################

        ##########################################################################
        # TODO: Make Output Flatten and Apply Transformation                     #
        # Please save the last three dimensions of output of the above code      #
        # Save these numbers in a variable called last_conv_dims                 #
        # Multiply all these dimensions to find num of features if flatten       #
        # Use tf.reshape to make a tensor flat                                   #
        # Define some weights and bias and apply linear transformation           #
        # Use normal and zero initializer for weights and bias respectively      #
        # Please store output of transformation in a variable called dense       #
        # Num of features for dense is defined by code_size in FLAG              #
        # Note that there is no need apply any kind of activation function       #
        ##########################################################################

        # make output of pooling flatten
        last_conv_dims = conv_pool3.shape[1:]
        flatten_dim = np.prod(last_conv_dims)
        flatten = tf.reshape(conv_pool3,
                             [tf.shape(conv_pool3)[0], flatten_dim])
        print(flatten.shape)

        # apply fully connected layer

        dense = tf.matmul(flatten,
                          normal_initializer([
                              flatten_dim, FLAGS.code_size
                          ])) + zero_initializer([FLAGS.code_size])
        print(dense.shape)

        ##########################################################################
        #                           END OF YOUR CODE                             #
        ##########################################################################

        return dense, last_conv_dims
Пример #7
0
    def __init__(self, config):

        self.config = config

        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']

        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        # 'rand' is a random array used for random cropping/mirroring of data
        x = T.ftensor4('x')
        y = T.ivector('y')
        rand = T.fvector('rand')

        print '... building the model'
        self.layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                                         batch_size),
                                   cropsize=227, rand=rand, mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(input=layer1_input,
                                        image_shape=(3, 227, 227, batch_size), 
                                        filter_shape=(3, 11, 11, 96), 
                                        convstride=4, padsize=0, group=1, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=True,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                        image_shape=(96, 27, 27, batch_size),
                                        filter_shape=(96, 5, 5, 256), 
                                        convstride=1, padsize=2, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.1, lrn=True,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output,
                                        image_shape=(256, 13, 13, batch_size),
                                        filter_shape=(256, 3, 3, 384), 
                                        convstride=1, padsize=1, group=1, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 384), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.1, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 256), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = FCLayer(input=fc_layer6_input, n_in=9216, n_out=4096)
        self.layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096)

        fc_layer7 = FCLayer(input=dropout_layer6.output, n_in=4096, n_out=4096)
        self.layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096)

        softmax_layer8 = SoftmaxLayer(
            input=dropout_layer7.output, n_in=4096, n_out=1000)
        self.layers.append(softmax_layer8)
        params += softmax_layer8.params
        weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################

        self.cost = softmax_layer8.negative_log_likelihood(y)
        self.errors = softmax_layer8.errors(y)
        self.errors_top_5 = softmax_layer8.errors_top_x(y, 5)
        self.params = params
        self.x = x
        self.y = y
        self.rand = rand
        self.weight_types = weight_types
        self.batch_size = batch_size
Пример #8
0
import skimage.measure
import pickle
from readlabel import read_image
from network import Network
from layers import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer, ReLU, Sigmoid

whole_data = read_image(path1 = 'test_images/', path2 = './test_annotation', data_size = 1050)

whole_x = whole_data[0]
mean = whole_x.mean(axis=0)
std = whole_x.std(axis=0)
whole_x = (whole_x - mean) / std
whole_y = whole_data[1]
test_x = whole_x
test_y = whole_y
test_data = [test_x, test_y]

mini_batch_size = 1

# final
net = Network([ConvPoolLayer(filter_shape=(5, 5, 3, 9), image_shape=(mini_batch_size, 64, 64, 3), poolsize=2, activation_fn=ReLU),
               ConvPoolLayer(filter_shape=(5, 5, 9, 18), image_shape=(mini_batch_size, 30, 30, 9), poolsize=2, activation_fn=ReLU),
               ConvPoolLayer(filter_shape=(4, 4, 18, 36), image_shape=(mini_batch_size, 13, 13, 18), poolsize=2, activation_fn=ReLU),
               FullyConnectedLayer(n_in=900, n_out=225, activation_fn=ReLU),
               FullyConnectedLayer(n_in=225, n_out=50, activation_fn=ReLU),
               SoftmaxLayer(n_in=50, n_out=20, activation_fn=None)], mini_batch_size)

print('start')
net.load_test(mini_batch_size, test_data, path='./finalparams_noact.pickle')

Пример #9
0
    def __init__(self, config, testMode):

        self.config = config

        batch_size = config['batch_size']
        lib_conv = config['lib_conv']
        useLayers = config['useLayers']
        #imgWidth = config['imgWidth']
        #imgHeight = config['imgHeight']
        initWeights = config['initWeights']  #if we wish to initialize alexnet with some weights. #need to make changes in layers.py to accept initilizing weights
        if initWeights:
            weightsDir = config['weightsDir']
            weightFileTag = config['weightFileTag']
        prob_drop = config['prob_drop']

        # ##################### BUILD NETWORK ##########################
        x = T.ftensor4('x')
        mean = T.ftensor4('mean')
        #y = T.lvector('y')

        print '... building the model'
        self.layers = []
        params = []
        weight_types = []

        if useLayers >= 1:
            convpool_layer1 = ConvPoolLayer(input=x-mean,
                                        image_shape=(3, None, None, batch_size),
                                        filter_shape=(3, 11, 11, 96),
                                        convstride=4, padsize=0, group=1, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=True,
                                        lib_conv=lib_conv,
                                        initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W_0'+weightFileTag, 'b_0'+weightFileTag]
                                        )
            self.layers.append(convpool_layer1)
            params += convpool_layer1.params
            weight_types += convpool_layer1.weight_type

        if useLayers >= 2:
            convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                        image_shape=(96, None, None, batch_size),    #change from 27 to appropriate value sbased on conv1's output
                                        filter_shape=(96, 5, 5, 256), 
                                        convstride=1, padsize=2, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.1, lrn=True,
                                        lib_conv=lib_conv,
                                        initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W0_1'+weightFileTag, 'W1_1'+weightFileTag, 'b0_1'+weightFileTag, 'b1_1'+weightFileTag]
                                        )
            self.layers.append(convpool_layer2)
            params += convpool_layer2.params
            weight_types += convpool_layer2.weight_type

        if useLayers >= 3:
            convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output,
                                        image_shape=(256, None, None, batch_size),
                                        filter_shape=(256, 3, 3, 384), 
                                        convstride=1, padsize=1, group=1, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W_2'+weightFileTag, 'b_2'+weightFileTag]
                                        )
            self.layers.append(convpool_layer3)
            params += convpool_layer3.params
            weight_types += convpool_layer3.weight_type

        if useLayers >= 4:
            convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output,
                                        image_shape=(384, None, None, batch_size),
                                        filter_shape=(384, 3, 3, 384), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.1, lrn=False,
                                        lib_conv=lib_conv,
                                        initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W0_3'+weightFileTag, 'W1_3'+weightFileTag, 'b0_3'+weightFileTag, 'b1_3'+weightFileTag]
                                        )
            self.layers.append(convpool_layer4)
            params += convpool_layer4.params
            weight_types += convpool_layer4.weight_type

        if useLayers >= 5:
            convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output,
                                        image_shape=(384, None, None, batch_size),
                                        filter_shape=(384, 3, 3, 256), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W0_4'+weightFileTag, 'W1_4'+weightFileTag, 'b0_4'+weightFileTag, 'b1_4'+weightFileTag]
                                        )
            self.layers.append(convpool_layer5)
            params += convpool_layer5.params
            weight_types += convpool_layer5.weight_type

        if useLayers >= 6:
            fc_layer6_input = T.flatten(convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
            fc_layer6 = FCLayer(input=fc_layer6_input, n_in=9216, n_out=4096, initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W_5'+weightFileTag, 'b_5'+weightFileTag])
            self.layers.append(fc_layer6)
            params += fc_layer6.params
            weight_types += fc_layer6.weight_type
            if testMode:
                dropout_layer6 = fc_layer6
            else:
                dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096, prob_drop=prob_drop)

        if useLayers >= 7:
            fc_layer7 = FCLayer(input=dropout_layer6.output, n_in=4096, n_out=4096, initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W_6'+weightFileTag, 'b_6'+weightFileTag])
            self.layers.append(fc_layer7)
            params += fc_layer7.params
            weight_types += fc_layer7.weight_type
            if testMode:
                dropout_layer6 = fc_layer7
            else:
                dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096, prob_drop=prob_drop)

        if useLayers >= 8:
            softmax_layer8 = SoftmaxLayer(input=dropout_layer7.output, n_in=4096, n_out=1000, initWeights=initWeights, weightsDir=weightsDir, weightFiles=['W_7'+weightFileTag, 'b_7'+weightFileTag])
            self.layers.append(softmax_layer8)
            params += softmax_layer8.params
            weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################

        self.output = self.layers[useLayers-1]
        self.params = params
        self.x = x
        self.mean = mean
        self.weight_types = weight_types
        self.batch_size = batch_size
        self.useLayers = useLayers
        self.outLayer = self.layers[useLayers-1]

        meanVal = np.load(config['mean_file'])
        meanVal = meanVal[:, :, :, np.newaxis].astype('float32')   #x is 4d, with 'batch' number of images. meanVal has only '1' in the 'batch' dimension. subtraction wont work.
        meanVal = np.tile(meanVal,(1,1,1,batch_size))
        self.meanVal = meanVal
        #meanVal = np.zeros([3,imgHeight,imgWidth,2], dtype='float32')

        if useLayers >= 8:  #if last layer is softmax, then its output is y_pred
            finalOut = self.outLayer.y_pred
        else:
            finalOut = self.outLayer.output
        self.forwardFunction = theano.function([self.x, In(self.mean, value=meanVal)], [finalOut])
Пример #10
0
    def image_repr(self, x, rand, config):
        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']

        layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x,
                                   image_shape=(3, 256, 256, batch_size),
                                   cropsize=227,
                                   rand=rand,
                                   mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(
            input=layer1_input,
            image_shape=(3, 227, 227, batch_size),
            filter_shape=(3, 11, 11, 96),
            convstride=4,
            padsize=0,
            group=1,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=True,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(
            input=convpool_layer1.output,
            image_shape=(96, 27, 27, batch_size),
            filter_shape=(96, 5, 5, 256),
            convstride=1,
            padsize=2,
            group=2,
            poolsize=3,
            poolstride=2,
            bias_init=0.1,
            lrn=True,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(
            input=convpool_layer2.output,
            image_shape=(256, 13, 13, batch_size),
            filter_shape=(256, 3, 3, 384),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=0,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(
            input=convpool_layer3.output,
            image_shape=(384, 13, 13, batch_size),
            filter_shape=(384, 3, 3, 384),
            convstride=1,
            padsize=1,
            group=2,
            poolsize=1,
            poolstride=0,
            bias_init=0.1,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(
            input=convpool_layer4.output,
            image_shape=(384, 13, 13, batch_size),
            filter_shape=(384, 3, 3, 256),
            convstride=1,
            padsize=1,
            group=2,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = MaxoutLayer(input=fc_layer6_input, n_in=9216, n_out=4096)
        layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096)

        fc_layer7 = MaxoutLayer(input=dropout_layer6.output,
                                n_in=4096,
                                n_out=4096)
        layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        #dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096)

        # Rename weight types so that weights can be shared
        new_weight_types = []
        counter_W = 0
        counter_b = 0
        for w in weight_types:
            if w == 'W':
                new_weight_types.append('W' + str(counter_W))
                counter_W += 1
            elif w == 'b':
                new_weight_types.append('b' + str(counter_b))
                counter_b += 1
        weight_types = new_weight_types

        return fc_layer7, layers, params, weight_types
Пример #11
0
    def __init__(self, config):

        self.config = config

        batch_size = config.batch_size
        lib_conv = config.lib_conv
        group = (2 if config.grouping else 1)
        LRN = (True if config.LRN else False)
        print 'LRN, group', LRN, group

        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        x = T.ftensor4('x')
        y = T.lvector('y')


        print '... building the model with ConvLib %s, LRN %s, grouping %i ' \
              % (lib_conv, LRN, group)
        self.layers = []
        params = []
        weight_types = []

        layer1_input = x

        convpool_layer1 = ConvPoolLayer(
            input=layer1_input,
            image_shape=((3, 224, 224,
                          batch_size) if lib_conv == 'cudaconvnet' else
                         (batch_size, 3, 227, 227)),
            filter_shape=((3, 11, 11, 96) if lib_conv == 'cudaconvnet' else
                          (96, 3, 11, 11)),
            convstride=4,
            padsize=(0 if lib_conv == 'cudaconvnet' else 3),
            group=1,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=LRN,
            lib_conv=lib_conv)
        self.layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(
            input=convpool_layer1.output,
            image_shape=((96, 27, 27,
                          batch_size) if lib_conv == 'cudaconvnet' else
                         (batch_size, 96, 27, 27)),
            filter_shape=((96, 5, 5, 256) if lib_conv == 'cudaconvnet' else
                          (256, 96, 5, 5)),
            convstride=1,
            padsize=2,
            group=group,
            poolsize=3,
            poolstride=2,
            bias_init=0.1,
            lrn=LRN,
            lib_conv=lib_conv,
        )
        self.layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(
            input=convpool_layer2.output,
            image_shape=((256, 13, 13,
                          batch_size) if lib_conv == 'cudaconvnet' else
                         (batch_size, 256, 13, 13)),
            filter_shape=((256, 3, 3, 384) if lib_conv == 'cudaconvnet' else
                          (384, 256, 3, 3)),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=0,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        self.layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(
            input=convpool_layer3.output,
            image_shape=((384, 13, 13,
                          batch_size) if lib_conv == 'cudaconvnet' else
                         (batch_size, 384, 13, 13)),
            filter_shape=((384, 3, 3, 384) if lib_conv == 'cudaconvnet' else
                          (384, 384, 3, 3)),
            convstride=1,
            padsize=1,
            group=group,
            poolsize=1,
            poolstride=0,
            bias_init=0.1,
            lrn=False,
            lib_conv=lib_conv,
        )
        self.layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(
            input=convpool_layer4.output,
            image_shape=((384, 13, 13,
                          batch_size) if lib_conv == 'cudaconvnet' else
                         (batch_size, 384, 13, 13)),
            filter_shape=((384, 3, 3, 256) if lib_conv == 'cudaconvnet' else
                          (256, 384, 3, 3)),
            convstride=1,
            padsize=1,
            group=group,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        self.layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        if lib_conv == 'cudaconvnet':
            fc_layer6_input = T.flatten(
                convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        else:
            fc_layer6_input = convpool_layer5.output.flatten(2)

        fc_layer6 = FCLayer(input=fc_layer6_input, n_in=9216, n_out=4096)
        self.layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output)

        fc_layer7 = FCLayer(input=dropout_layer6.output, n_in=4096, n_out=4096)
        self.layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        dropout_layer7 = DropoutLayer(fc_layer7.output)

        softmax_layer8 = SoftmaxLayer(input=dropout_layer7.output,
                                      n_in=4096,
                                      n_out=1000)
        self.layers.append(softmax_layer8)
        params += softmax_layer8.params
        weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################

        self.cost = softmax_layer8.negative_log_likelihood(y)
        self.errors = softmax_layer8.errors(y)
        self.errors_top_5 = softmax_layer8.errors_top_x(y, 5)
        self.params = params
        self.x = x
        self.y = y
        # self.rand = rand
        self.weight_types = weight_types
        self.batch_size = batch_size