Пример #1
0
    def append_gan_network(self, x_in, true_X_input):

        # Append the inputs to the output of the SRResNet
        x = merge([x_in, true_X_input], mode='concat', concat_axis=0)

        # Normalize the inputs via custom VGG Normalization layer
        x = Normalize(type="gan", value=255., name="gan_normalize")(x)

        x = Convolution2D(64,
                          self.k,
                          self.k,
                          border_mode='same',
                          name='gan_conv1_1')(x)
        x = LeakyReLU(0.3, name="gan_lrelu1_1")(x)

        x = Convolution2D(64,
                          self.k,
                          self.k,
                          border_mode='same',
                          name='gan_conv1_2',
                          subsample=(2, 2))(x)
        x = LeakyReLU(0.3, name='gan_lrelu1_2')(x)
        x = BatchNormalization(mode=self.mode, axis=1,
                               name='gan_batchnorm1_1')(x)

        filters = [128, 256] if self.small_model else [128, 256, 512]

        for i, nb_filters in enumerate(filters):
            for j in range(2):
                subsample = (2, 2) if j == 1 else (1, 1)

                x = Convolution2D(nb_filters,
                                  self.k,
                                  self.k,
                                  border_mode='same',
                                  subsample=subsample,
                                  name='gan_conv%d_%d' % (i + 2, j + 1))(x)
                x = LeakyReLU(0.3, name='gan_lrelu_%d_%d' % (i + 2, j + 1))(x)
                x = BatchNormalization(mode=self.mode,
                                       axis=1,
                                       name='gan_batchnorm%d_%d' %
                                       (i + 2, j + 1))(x)

        x = Flatten(name='gan_flatten')(x)

        output_dim = 128 if self.small_model else 1024

        x = Dense(output_dim, name='gan_dense1')(x)
        x = LeakyReLU(0.3, name='gan_lrelu5')(x)

        gan_regulrizer = AdversarialLossRegularizer(
            weight=self.adversarial_loss_weight)
        x = Dense(1,
                  activation="sigmoid",
                  activity_regularizer=gan_regulrizer,
                  name='gan_output')(x)

        return x
Пример #2
0
def mnist_feature_learner(name, images, DIM, dropout=None, is_training=None):
    initializer = 'glorot_uniform'
    normalizer = 'BN'

    output = Conv2D('{}.feature.Conv.1'.format(name), images, DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.1'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = Conv2D('{}.feature.Conv.2'.format(name), output, 2*DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.2'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = Conv2D('{}.feature.Conv.3'.format(name), output, 4*DIM, initializer=initializer)
    output = tf.nn.max_pool(output, (1,1,2,2), (1,1,2,2), 'VALID', data_format='NCHW')

    output = Normalize('{}.feature.NORM.3'.format(name), output, method=normalizer, bn_is_training=is_training)
    output = tf.nn.relu(output)

    output = tf.reduce_mean(output, [2,3])
    return output
    def append_vgg_network(self, x_in, true_X_input, pre_train=False):

        # Append the initial inputs to the outputs of the SRResNet
        x = merge([x_in, true_X_input], mode='concat', concat_axis=0)

        # Normalize the inputs via custom VGG Normalization layer
        x = Normalize(name="normalize_vgg")(x)

        # Begin adding the VGG layers
        x = Convolution2D(64,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv1_1',
                          border_mode='same')(x)

        x = Convolution2D(64,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv1_2',
                          border_mode='same')(x)
        x = MaxPooling2D(name='vgg_maxpool1')(x)

        x = Convolution2D(128,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv2_1',
                          border_mode='same')(x)

        if pre_train:
            vgg_regularizer2 = ContentVGGRegularizer(weight=self.vgg_weight)
            x = Convolution2D(128,
                              3,
                              3,
                              activation='relu',
                              name='vgg_conv2_2',
                              border_mode='same',
                              activity_regularizer=vgg_regularizer2)(x)
        else:
            x = Convolution2D(128,
                              3,
                              3,
                              activation='relu',
                              name='vgg_conv2_2',
                              border_mode='same')(x)
        x = MaxPooling2D(name='vgg_maxpool2')(x)

        x = Convolution2D(256,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv3_1',
                          border_mode='same')(x)
        x = Convolution2D(256,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv3_2',
                          border_mode='same')(x)

        x = Convolution2D(256,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv3_3',
                          border_mode='same')(x)
        x = MaxPooling2D(name='vgg_maxpool3')(x)

        x = Convolution2D(512,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv4_1',
                          border_mode='same')(x)
        x = Convolution2D(512,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv4_2',
                          border_mode='same')(x)

        x = Convolution2D(512,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv4_3',
                          border_mode='same')(x)
        x = MaxPooling2D(name='vgg_maxpool4')(x)

        x = Convolution2D(512,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv5_1',
                          border_mode='same')(x)
        x = Convolution2D(512,
                          3,
                          3,
                          activation='relu',
                          name='vgg_conv5_2',
                          border_mode='same')(x)

        if not pre_train:
            vgg_regularizer5 = ContentVGGRegularizer(weight=self.vgg_weight)
            x = Convolution2D(512,
                              3,
                              3,
                              activation='relu',
                              name='vgg_conv5_3',
                              border_mode='same',
                              activity_regularizer=vgg_regularizer5)(x)
        else:
            x = Convolution2D(512,
                              3,
                              3,
                              activation='relu',
                              name='vgg_conv5_3',
                              border_mode='same')(x)
        x = MaxPooling2D(name='vgg_maxpool5')(x)

        return x
Пример #4
0
def SSD300(input_shape, num_classes=21):
    """SSD300 architecture.

    # Arguments
        input_shape: Shape of the input image,
            expected to be either (300, 300, 3) or (3, 300, 300)(not tested).
        num_classes: Number of classes including background.

    # References
        https://arxiv.org/abs/1512.02325
    """
    print('begin building networks')
    kernel_size = (3, 3)

    net = {}
    # Block 1
    input_tensor = Input(shape=input_shape)
    img_size = (input_shape[1], input_shape[0])
    net['input'] = input_tensor
    net['conv1_1'] = Conv2D(64,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv1_1')(net['input'])
    net['conv1_2'] = Conv2D(64,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv1_2')(net['conv1_1'])
    net['pool1'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool1')(net['conv1_2'])
    # Block 2
    net['conv2_1'] = Conv2D(128,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv2_1')(net['pool1'])
    net['conv2_2'] = Conv2D(128,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv2_2')(net['conv2_1'])
    net['pool2'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool2')(net['conv2_2'])
    # Block 3
    net['conv3_1'] = Conv2D(256,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv3_1')(net['pool2'])
    net['conv3_2'] = Conv2D(256,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv3_2')(net['conv3_1'])
    net['conv3_3'] = Conv2D(256,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv3_3')(net['conv3_2'])
    net['pool3'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool3')(net['conv3_3'])
    # Block 4
    net['conv4_1'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv4_1')(net['pool3'])
    net['conv4_2'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv4_2')(net['conv4_1'])
    net['conv4_3'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv4_3')(net['conv4_2'])
    net['pool4'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool4')(net['conv4_3'])
    # Block 5
    net['conv5_1'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv5_1')(net['pool4'])
    net['conv5_2'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv5_2')(net['conv5_1'])
    net['conv5_3'] = Conv2D(512,
                            kernel_size,
                            activation='relu',
                            padding='same',
                            name='conv5_3')(net['conv5_2'])
    net['pool5'] = MaxPooling2D((3, 3),
                                strides=(1, 1),
                                padding='same',
                                name='pool5')(net['conv5_3'])
    # FC6
    net['fc6'] = Conv2D(1024,
                        kernel_size,
                        dilation_rate=(6, 6),
                        activation='relu',
                        padding='same',
                        name='fc6')(net['pool5'])
    # x = Dropout(0.5, name='drop6')(x)
    # FC7
    net['fc7'] = Conv2D(1024, (1, 1),
                        activation='relu',
                        padding='same',
                        name='fc7')(net['fc6'])
    # x = Dropout(0.5, name='drop7')(x)
    # Block 6
    net['conv6_1'] = Conv2D(256, (1, 1),
                            activation='relu',
                            padding='same',
                            name='conv6_1')(net['fc7'])
    net['conv6_2'] = Conv2D(512,
                            kernel_size,
                            strides=(2, 2),
                            activation='relu',
                            padding='same',
                            name='conv6_2')(net['conv6_1'])
    # Block 7
    net['conv7_1'] = Conv2D(128, (1, 1),
                            activation='relu',
                            padding='same',
                            name='conv7_1')(net['conv6_2'])
    net['conv7_2'] = ZeroPadding2D()(net['conv7_1'])
    net['conv7_2'] = Conv2D(256,
                            kernel_size,
                            strides=(2, 2),
                            activation='relu',
                            padding='valid',
                            name='conv7_2')(net['conv7_2'])
    # Block 8
    net['conv8_1'] = Conv2D(128, (1, 1),
                            activation='relu',
                            padding='same',
                            name='conv8_1')(net['conv7_2'])
    net['conv8_2'] = Conv2D(256,
                            kernel_size,
                            strides=(2, 2),
                            activation='relu',
                            padding='same',
                            name='conv8_2')(net['conv8_1'])
    # Last Pool
    net['pool6'] = GlobalAveragePooling2D(name='pool6')(net['conv8_2'])
    print('base network built')

    # Prediction from conv4_3
    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
    num_priors = 3
    x = Conv2D(num_priors * 4,
               kernel_size,
               padding='same',
               name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_loc'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
    net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
    name = 'conv4_3_norm_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Conv2D(num_priors * num_classes,
               kernel_size,
               padding='same',
               name=name)(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_conf'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
    net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
    priorbox = PriorBox(img_size,
                        30.0,
                        aspect_ratios=[2],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv4_3_norm_mbox_priorbox')
    net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])
    print('conv4_3_norm_mbox_priorbox built')
    # Prediction from fc7
    num_priors = 6
    net['fc7_mbox_loc'] = Conv2D(num_priors * 4,
                                 kernel_size,
                                 padding='same',
                                 name='fc7_mbox_loc')(net['fc7'])
    flatten = Flatten(name='fc7_mbox_loc_flat')
    net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc'])
    name = 'fc7_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    net['fc7_mbox_conf'] = Conv2D(num_priors * num_classes, (3, 3),
                                  padding='same',
                                  name=name)(net['fc7'])
    flatten = Flatten(name='fc7_mbox_conf_flat')
    net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf'])
    priorbox = PriorBox(img_size,
                        60.0,
                        max_size=114.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='fc7_mbox_priorbox')
    net['fc7_mbox_priorbox'] = priorbox(net['fc7'])
    print('fc7_mbox_priorbox built')
    # Prediction from conv6_2
    num_priors = 6
    x = Conv2D(num_priors * 4,
               kernel_size,
               padding='same',
               name='conv6_2_mbox_loc')(net['conv6_2'])
    net['conv6_2_mbox_loc'] = x
    flatten = Flatten(name='conv6_2_mbox_loc_flat')
    net['conv6_2_mbox_loc_flat'] = flatten(net['conv6_2_mbox_loc'])
    name = 'conv6_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Conv2D(num_priors * num_classes,
               kernel_size,
               padding='same',
               name=name)(net['conv6_2'])
    net['conv6_2_mbox_conf'] = x
    flatten = Flatten(name='conv6_2_mbox_conf_flat')
    net['conv6_2_mbox_conf_flat'] = flatten(net['conv6_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        114.0,
                        max_size=168.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv6_2_mbox_priorbox')
    net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2'])
    print('conv6_2_mbox_priorbox built')
    # Prediction from conv7_2
    num_priors = 6
    x = Conv2D(num_priors * 4,
               kernel_size,
               padding='same',
               name='conv7_2_mbox_loc')(net['conv7_2'])
    net['conv7_2_mbox_loc'] = x
    flatten = Flatten(name='conv7_2_mbox_loc_flat')
    net['conv7_2_mbox_loc_flat'] = flatten(net['conv7_2_mbox_loc'])
    name = 'conv7_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Conv2D(num_priors * num_classes,
               kernel_size,
               padding='same',
               name=name)(net['conv7_2'])
    net['conv7_2_mbox_conf'] = x
    flatten = Flatten(name='conv7_2_mbox_conf_flat')
    net['conv7_2_mbox_conf_flat'] = flatten(net['conv7_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        168.0,
                        max_size=222.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv7_2_mbox_priorbox')
    net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2'])
    print('conv7_2_mbox_priorbox built')
    # Prediction from conv8_2
    num_priors = 6
    x = Conv2D(num_priors * 4,
               kernel_size,
               padding='same',
               name='conv8_2_mbox_loc')(net['conv8_2'])
    net['conv8_2_mbox_loc'] = x
    flatten = Flatten(name='conv8_2_mbox_loc_flat')
    net['conv8_2_mbox_loc_flat'] = flatten(net['conv8_2_mbox_loc'])
    name = 'conv8_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Conv2D(num_priors * num_classes,
               kernel_size,
               padding='same',
               name=name)(net['conv8_2'])
    net['conv8_2_mbox_conf'] = x
    flatten = Flatten(name='conv8_2_mbox_conf_flat')
    net['conv8_2_mbox_conf_flat'] = flatten(net['conv8_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        222.0,
                        max_size=276.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv8_2_mbox_priorbox')
    net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2'])
    print('conv8_2_mbox_priorbox built')
    # Prediction from pool6
    num_priors = 6
    x = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(net['pool6'])
    net['pool6_mbox_loc_flat'] = x
    name = 'pool6_mbox_conf_flat'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Dense(num_priors * num_classes, name=name)(net['pool6'])
    net['pool6_mbox_conf_flat'] = x
    priorbox = PriorBox(img_size,
                        276.0,
                        max_size=330.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='pool6_mbox_priorbox')
    if K.image_dim_ordering() == 'tf':
        target_shape = (1, 1, 256)
    else:
        target_shape = (256, 1, 1)
    net['pool6_reshaped'] = Reshape(target_shape,
                                    name='pool6_reshaped')(net['pool6'])
    net['pool6_mbox_priorbox'] = priorbox(net['pool6_reshaped'])
    print('pool6_mbox_priorbox built')
    # Gather all predictions
    net['mbox_loc'] = concatenate([
        net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'],
        net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'],
        net['conv8_2_mbox_loc_flat'], net['pool6_mbox_loc_flat']
    ],
                                  axis=1,
                                  name='mbox_loc')
    net['mbox_conf'] = concatenate([
        net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'],
        net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'],
        net['conv8_2_mbox_conf_flat'], net['pool6_mbox_conf_flat']
    ],
                                   axis=1,
                                   name='mbox_conf')
    net['mbox_priorbox'] = concatenate([
        net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'],
        net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'],
        net['conv8_2_mbox_priorbox'], net['pool6_mbox_priorbox']
    ],
                                       axis=1,
                                       name='mbox_priorbox')
    print('gathering all prediction layers built')
    if hasattr(net['mbox_loc'], '_keras_shape'):
        # divide 4 for [xmin, ymin, xmax, ymax]
        num_boxes = net['mbox_loc']._keras_shape[-1] // 4
    elif hasattr(net['mbox_loc'], 'int_shape'):
        num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4
    net['mbox_loc'] = Reshape((num_boxes, 4),
                              name='mbox_loc_final')(net['mbox_loc'])
    net['mbox_conf'] = Reshape((num_boxes, num_classes),
                               name='mbox_conf_logits')(net['mbox_conf'])
    net['mbox_conf'] = Activation('softmax',
                                  name='mbox_conf_final')(net['mbox_conf'])
    net['predictions'] = concatenate(
        [net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']],
        axis=2,
        name='predictions')
    print('prediction layers built')
    model = Model(net['input'], net['predictions'])
    return model
Пример #5
0
def normalize(vec, axis = -1, _type = 'L2', eps = 1e-8):
	return Normalize.apply(vec, axis, _type, eps)
Пример #6
0
def mini_SSD300(input_shape=(300,300,3), num_classes=21):
    """SSD300 architecture.

    # Arguments
        input_shape: Shape of the input image,
            expected to be either (300, 300, 3) or (3, 300, 300)(not tested).
        num_classes: Number of classes including background.

    # References
        https://arxiv.org/abs/1512.02325
    """
    net = {}
    # Block 1
    input_tensor = input_tensor = Input(shape=input_shape)
    img_size = (input_shape[1], input_shape[0])
    net['input'] = input_tensor
    net['conv1_1'] = Convolution2D(64, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv1_1')(net['input'])
    net['conv1_2'] = Convolution2D(64, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv1_2')(net['conv1_1'])
    net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool1')(net['conv1_2'])
    # Block 2
    net['conv2_1'] = Convolution2D(128, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv2_1')(net['pool1'])
    net['conv2_2'] = Convolution2D(128, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv2_2')(net['conv2_1'])
    net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool2')(net['conv2_2'])
    # Block 3
    net['conv3_1'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_1')(net['pool2'])
    net['conv3_2'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_2')(net['conv3_1'])
    net['conv3_3'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_3')(net['conv3_2'])
    net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool3')(net['conv3_3'])
    # Block 4
    net['conv4_1'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv4_1')(net['pool3'])
    net['conv4_2'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv4_2')(net['conv4_1'])
    net['conv4_3'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv4_3')(net['conv4_2'])
    net['pool4'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool4')(net['conv4_3'])
    # Block 5
    net['conv5_1'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv5_1')(net['pool4'])
    net['conv5_2'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv5_2')(net['conv5_1'])
    net['conv5_3'] = Convolution2D(512, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv5_3')(net['conv5_2'])
    net['pool5'] = MaxPooling2D((3, 3), strides=(1, 1), border_mode='same',
                                name='pool5')(net['conv5_3'])
    # FC6
    net['fc6'] = AtrousConvolution2D(1024, 3, 3, atrous_rate=(6, 6),
                                     activation='relu', border_mode='same',
                                     name='fc6')(net['pool5'])
    # x = Dropout(0.5, name='drop6')(x)
    # FC7
    net['fc7'] = Convolution2D(1024, 1, 1, activation='relu',
                               border_mode='same', name='fc7')(net['fc6'])
    # x = Dropout(0.5, name='drop7')(x)
    # Block 6
    # deleted

    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
    num_priors = 3
    x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
                      name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_loc'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
    net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
    name = 'conv4_3_norm_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
                      name=name)(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_conf'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
    net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
    priorbox = PriorBox(img_size, 30.0, aspect_ratios=[2],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv4_3_norm_mbox_priorbox')
    net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])
    # Prediction from fc7
    num_priors = 6
    net['fc7_mbox_loc'] = Convolution2D(num_priors * 4, 3, 3,
                                        border_mode='same',
                                        name='fc7_mbox_loc')(net['fc7'])
    flatten = Flatten(name='fc7_mbox_loc_flat')
    net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc'])
    name = 'fc7_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    net['fc7_mbox_conf'] = Convolution2D(num_priors * num_classes, 3, 3,
                                         border_mode='same',
                                         name=name)(net['fc7'])
    flatten = Flatten(name='fc7_mbox_conf_flat')
    net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf'])
    priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='fc7_mbox_priorbox')
    net['fc7_mbox_priorbox'] = priorbox(net['fc7'])
    # Gather all predictions
    net['mbox_loc'] = merge([net['conv4_3_norm_mbox_loc_flat'],
                             net['fc7_mbox_loc_flat']],
                            mode='concat', concat_axis=1, name='mbox_loc')
    net['mbox_conf'] = merge([net['conv4_3_norm_mbox_conf_flat'],
                              net['fc7_mbox_conf_flat']],
                             mode='concat', concat_axis=1, name='mbox_conf')
    if hasattr(net['mbox_loc'], '_keras_shape'):
        num_boxes = net['mbox_loc']._keras_shape[-1] // 4
    elif hasattr(net['mbox_loc'], 'int_shape'):
        num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4
    net['mbox_loc'] = Reshape((num_boxes, 4),
                              name='mbox_loc_final')(net['mbox_loc'])
    net['mbox_conf'] = Reshape((num_boxes, num_classes),
                               name='mbox_conf_logits')(net['mbox_conf'])
    net['mbox_conf'] = Activation('softmax',
                                  name='mbox_conf_final')(net['mbox_conf'])
    net['mbox_priorbox'] = merge([net['conv4_3_norm_mbox_priorbox'],
                                  net['fc7_mbox_priorbox']],
                                 mode='concat', concat_axis=1,
                                 name='mbox_priorbox')

    net['predictions'] = merge([net['mbox_loc'],
                               net['mbox_conf'],
                               net['mbox_priorbox']],
                               mode='concat', concat_axis=2,
                               name='predictions')
    model = Model(net['input'], net['predictions'])
    return model
Пример #7
0
def feature_learner(name, images, DIM, dropout=None, is_training=None):
    output = images

    output = Conv2D('{}.conv.Init'.format(name),
                    output,
                    DIM,
                    initializer='glorot_uniform')

    output = ResidualLayer('{}.conv.1.1'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.2'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.3'.format(name),
                           output,
                           DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.1.4'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.2.1'.format(name),
                           output,
                           2 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.2'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.3'.format(name),
                           output,
                           2 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.2.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.3.1'.format(name),
                           output,
                           4 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.2'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.3'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.3.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = ResidualLayer('{}.conv.4.1'.format(name),
                           output,
                           4 * DIM,
                           stride=2,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.2'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.3'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)
    output = ResidualLayer('{}.conv.4.4'.format(name),
                           output,
                           4 * DIM,
                           is_training=is_training,
                           dropout=dropout)

    output = Normalize('{}.convout.3.NORM'.format(name),
                       output,
                       bn_is_training=is_training)
    output = tf.nn.relu(output)
    output = tf.reduce_mean(output, [2, 3])
    return output
Пример #8
0
def SSD300(input_shape=(300, 300, 3),
           num_classes=21,
           weights_path=None,
           frozen_layers=None):

    input_layer = Input(shape=input_shape)

    # Block 1 -----------------------------------------------
    conv1_1 = Conv2D(64, (3, 3),
                     name='conv1_1',
                     padding='same',
                     activation='relu')(input_layer)

    conv1_2 = Conv2D(64, (3, 3),
                     name='conv1_2',
                     padding='same',
                     activation='relu')(conv1_1)

    pool1 = MaxPooling2D(
        name='pool1',
        pool_size=(2, 2),
        strides=(2, 2),
        padding='same',
    )(conv1_2)

    # Block 2 ----------------------------------------------
    conv2_1 = Conv2D(128, (3, 3),
                     name='conv2_1',
                     padding='same',
                     activation='relu')(pool1)

    conv2_2 = Conv2D(128, (3, 3),
                     name='conv2_2',
                     padding='same',
                     activation='relu')(conv2_1)

    pool2 = MaxPooling2D(name='pool2',
                         pool_size=(2, 2),
                         strides=(2, 2),
                         padding='same')(conv2_2)

    # Block 3 ----------------------------------------------
    conv3_1 = Conv2D(256, (3, 3),
                     name='conv3_1',
                     padding='same',
                     activation='relu')(pool2)

    conv3_2 = Conv2D(256, (3, 3),
                     name='conv3_2',
                     padding='same',
                     activation='relu')(conv3_1)

    conv3_3 = Conv2D(256, (3, 3),
                     name='conv3_3',
                     padding='same',
                     activation='relu')(conv3_2)

    pool3 = MaxPooling2D(name='pool3',
                         pool_size=(2, 2),
                         strides=(2, 2),
                         padding='same')(conv3_3)

    # Block 4 ---------------------------------------------
    conv4_1 = Conv2D(512, (3, 3),
                     name='conv4_1',
                     padding='same',
                     activation='relu')(pool3)

    conv4_2 = Conv2D(512, (3, 3),
                     name='conv4_2',
                     padding='same',
                     activation='relu')(conv4_1)

    conv4_3 = Conv2D(512, (3, 3),
                     name='conv4_3',
                     padding='same',
                     activation='relu')(conv4_2)

    pool4 = MaxPooling2D(name='pool4',
                         pool_size=(2, 2),
                         strides=(2, 2),
                         padding='same')(conv4_3)

    # Block 5 --------------------------------------------
    conv5_1 = Conv2D(512, (3, 3),
                     name='conv5_1',
                     padding='same',
                     activation='relu')(pool4)

    conv5_2 = Conv2D(512, (3, 3),
                     name='conv5_2',
                     padding='same',
                     activation='relu')(conv5_1)

    conv5_3 = Conv2D(512, (3, 3),
                     name='conv5_3',
                     padding='same',
                     activation='relu')(conv5_2)

    pool5 = MaxPooling2D(name='pool5',
                         pool_size=(3, 3),
                         strides=(1, 1),
                         padding='same')(conv5_3)

    # FC6 ------------------------------------------------
    fc6 = Conv2D(1024, (3, 3),
                 name='fc6',
                 dilation_rate=(6, 6),
                 padding='same',
                 activation='relu')(pool5)

    # FC7 ------------------------------------------------
    fc7 = Conv2D(1024, (1, 1), name='fc7', padding='same',
                 activation='relu')(fc6)

    # EXTRAS
    # Block 6 --------------------------------------------
    conv6_1 = Conv2D(256, (1, 1),
                     name='conv6_1',
                     padding='same',
                     activation='relu')(fc7)

    conv6_2 = Conv2D(512, (3, 3),
                     name='conv6_2',
                     strides=(2, 2),
                     padding='same',
                     activation='relu')(conv6_1)

    # Block 7 --------------------------------------------
    conv7_1 = Conv2D(128, (1, 1),
                     name='conv7_1',
                     padding='same',
                     activation='relu')(conv6_2)

    #conv7_1z = ZeroPadding2D(name='conv7_1z')(conv7_1)

    conv7_2 = Conv2D(256, (3, 3),
                     name='conv7_2',
                     padding='same',
                     strides=(2, 2),
                     activation='relu')(conv7_1)

    # Block 8 --------------------------------------------
    conv8_1 = Conv2D(128, (1, 1),
                     name='conv8_1',
                     padding='same',
                     activation='relu')(conv7_2)

    conv8_2 = Conv2D(256, (3, 3),
                     name='conv8_2',
                     padding='valid',
                     strides=(1, 1),
                     activation='relu')(conv8_1)

    # Block 9 -------------------------------------------
    conv9_1 = Conv2D(128, (1, 1),
                     name='conv9_1',
                     padding='same',
                     activation='relu')(conv8_2)
    conv9_2 = Conv2D(256, (3, 3),
                     name='conv9_2',
                     padding='valid',
                     strides=(1, 1),
                     activation='relu')(conv9_1)

    # Last Pool ------------------------------------------
    # pool6 = GlobalAveragePooling2D(name='pool6')(conv8_2)

    # Prediction from conv4_3 ----------------------------
    num_priors = 4
    name = 'conv4_3_norm_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)

    conv4_3_norm = Normalize(20, name='conv4_3_norm')(conv4_3)

    conv4_3_norm_mbox_loc = Conv2D(num_priors * 4, (3, 3),
                                   name='conv4_3_norm_mbox_loc',
                                   padding='same')(conv4_3_norm)

    conv4_3_norm_mbox_loc_flat = Flatten(
        name='conv4_3_norm_mbox_loc_flat')(conv4_3_norm_mbox_loc)

    conv4_3_norm_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                                    name=name,
                                    padding='same')(conv4_3_norm)

    conv4_3_norm_mbox_conf_flat = Flatten(
        name='conv4_3_norm_mbox_conf_flat')(conv4_3_norm_mbox_conf)

    # Prediction from fc7 ---------------------------------
    num_priors = 6
    name = 'fc7_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)

    fc7_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                           padding='same',
                           name=name)(fc7)

    fc7_mbox_conf_flat = Flatten(name='fc7_mbox_conf_flat')(fc7_mbox_conf)

    fc7_mbox_loc = Conv2D(num_priors * 4, (3, 3),
                          name='fc7_mbox_loc',
                          padding='same')(fc7)

    fc7_mbox_loc_flat = Flatten(name='fc7_mbox_loc_flat')(fc7_mbox_loc)

    # Prediction from conv6_2 ------------------------------
    num_priors = 6
    name = 'conv6_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    conv6_2_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                               padding='same',
                               name=name)(conv6_2)

    conv6_2_mbox_conf_flat = Flatten(
        name='conv6_2_mbox_conf_flat')(conv6_2_mbox_conf)

    conv6_2_mbox_loc = Conv2D(num_priors * 4, (
        3,
        3,
    ),
                              name='conv6_2_mbox_loc',
                              padding='same')(conv6_2)

    conv6_2_mbox_loc_flat = Flatten(
        name='conv6_2_mbox_loc_flat')(conv6_2_mbox_loc)

    # Prediction from conv7_2 --------------------------------
    num_priors = 6
    name = 'conv7_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    conv7_2_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                               padding='same',
                               name=name)(conv7_2)

    conv7_2_mbox_conf_flat = Flatten(
        name='conv7_2_mbox_conf_flat')(conv7_2_mbox_conf)

    conv7_2_mbox_loc = Conv2D(num_priors * 4, (3, 3),
                              padding='same',
                              name='conv7_2_mbox_loc')(conv7_2)

    conv7_2_mbox_loc_flat = Flatten(
        name='conv7_2_mbox_loc_flat')(conv7_2_mbox_loc)

    # Prediction from conv8_2 -------------------------------
    num_priors = 4
    name = 'conv8_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    conv8_2_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                               padding='same',
                               name=name)(conv8_2)

    conv8_2_mbox_conf_flat = Flatten(
        name='conv8_2_mbox_conf_flat')(conv8_2_mbox_conf)

    conv8_2_mbox_loc = Conv2D(num_priors * 4, (3, 3),
                              padding='same',
                              name='conv8_2_mbox_loc')(conv8_2)

    conv8_2_mbox_loc_flat = Flatten(
        name='conv8_2_mbox_loc_flat')(conv8_2_mbox_loc)

    # Prediction from pool6 --------------------------------------------
    """
    num_priors = 4
    name = 'pool6_mbox_conf_flat'
    if num_classes != 21:
        name += '_{}'.format(num_classes)

    pool6_mbox_loc_flat = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(pool6)

    pool6_mbox_conf_flat = Dense(num_priors * num_classes, name=name)(pool6)
    """
    num_priors = 4
    name = 'pool6_mbox_conf_flat'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    conv9_2_mbox_conf = Conv2D(num_priors * num_classes, (3, 3),
                               padding='same',
                               name=name)(conv9_2)

    pool6_mbox_conf_flat = Flatten(
        name='pool6_mbox_loc_flat')(conv9_2_mbox_conf)

    conv9_2_mbox_loc = Conv2D(num_priors * 4, (3, 3),
                              padding='same',
                              name='pool6_mbox_loc')(conv9_2)

    pool6_mbox_loc_flat = Flatten(
        name='pool6_2_mbox_loc_flat')(conv9_2_mbox_loc)

    # Gather all predictions -------------------------------------------
    mbox_loc = concatenate([
        conv4_3_norm_mbox_loc_flat, fc7_mbox_loc_flat, conv6_2_mbox_loc_flat,
        conv7_2_mbox_loc_flat, conv8_2_mbox_loc_flat, pool6_mbox_loc_flat
    ],
                           axis=1,
                           name='mbox_loc')

    mbox_conf = concatenate([
        conv4_3_norm_mbox_conf_flat, fc7_mbox_conf_flat,
        conv6_2_mbox_conf_flat, conv7_2_mbox_conf_flat, conv8_2_mbox_conf_flat,
        pool6_mbox_conf_flat
    ],
                            axis=1,
                            name='mbox_conf')

    if hasattr(mbox_loc, '_keras_shape'):
        num_boxes = mbox_loc._keras_shape[-1] // 4
    elif hasattr(mbox_loc, 'int_shape'):
        num_boxes = K.int_shape(mbox_loc)[-1] // 4
    mbox_loc = Reshape((num_boxes, 4), name='mbox_loc_final')(mbox_loc)
    mbox_conf = Reshape((num_boxes, num_classes),
                        name='mbox_conf_logits')(mbox_conf)
    mbox_conf = Activation('softmax', name='mbox_conf_final')(mbox_conf)
    predictions = concatenate([mbox_loc, mbox_conf],
                              axis=2,
                              name='predictions')
    model = Model(inputs=input_layer, outputs=predictions)

    if weights_path is not None:
        model.load_weights(weights_path, by_name=True)

    if frozen_layers is not None:
        for layer in model.layers:
            if layer.name in frozen_layers:
                layer.trainable = False

    return model
def simple_SSD(input_shape, num_classes, min_size, num_priors, max_size,
               aspect_ratios, variances):
    input_tensor = Input(shape=input_shape)

    body = Convolution2D(16, 7, 7)(input_tensor)
    body = Activation('relu')(body)
    body = MaxPooling2D(2, 2, border_mode='valid')(body)

    body = Convolution2D(32, 5, 5)(body)
    body = Activation('relu')(body)
    branch_1 = MaxPooling2D(2, 2, border_mode='valid')(body)

    body = Convolution2D(64, 3, 3)(branch_1)
    body = Activation('relu')(body)
    branch_2 = MaxPooling2D(2, 2, border_mode='valid')(body)

    # first branch
    norm_1 = Normalize(20)(branch_1)
    localization_1 = Convolution2D(num_priors * 4, 3, 3,
                                   border_mode='same')(norm_1)
    localization_1 = Flatten(localization_1)
    classification_1 = Convolution2D(num_priors * num_classes,
                                     3,
                                     3,
                                     border_mode='same')(norm_1)
    classification_1 = Flatten()(classification_1)
    prior_boxes_1 = PriorBox(input_shape[0:2], min_size, max_size,
                             aspect_ratios)

    # second branch
    norm_2 = Normalize(20)(branch_2)
    localization_2 = Convolution2D(num_priors * 4, 3, 3,
                                   border_mode='same')(norm_2)
    localization_2 = Flatten(localization_2)
    classification_2 = Convolution2D(num_priors * num_classes,
                                     3,
                                     3,
                                     border_mode='same')(norm_2)
    classification_2 = Flatten()(classification_2)
    prior_boxes_2 = PriorBox(input_shape[0:2], min_size, max_size,
                             aspect_ratios)

    localization_head = Merge([localization_1, localization_2],
                              mode='concat',
                              concat_axis=1)

    classification_head = Merge([classification_1, classification_2],
                                mode='concat',
                                concat_axis=1)

    prior_boxes_head = Merge([prior_boxes_1, prior_boxes_2],
                             mode='concat',
                             concat_axis=1)

    if hasattr(localization_head, '_keras_shape'):
        num_boxes = localization_head._keras_shape[-1] // 4
    elif hasattr(localization_head, 'int_shape'):
        num_boxes = K.int_shape(localization_head)[-1] // 4

    localization_head = Reshape((num_boxes, 4))(localization_head)
    classification_head = Reshape(
        (num_boxes, num_classes))(classification_head)
    classification_head = Activation('softmax')(classification_head)
    predictions = Merge(localization_head,
                        classification_head,
                        prior_boxes_head,
                        mode='concat',
                        concat_axis=2)

    model = Model(input_tensor, predictions)

    return model
def mini_SSD300(input_shape=(300, 300, 3), num_classes=21):
    net = {}
    # Block 1
    input_tensor = input_tensor = Input(shape=input_shape)
    img_size = (input_shape[1], input_shape[0])
    net['input'] = input_tensor
    net['conv1_1'] = Convolution2D(64, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv1_1')(net['input'])
    net['conv1_2'] = Convolution2D(64, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv1_2')(net['conv1_1'])
    net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool1')(net['conv1_2'])
    # Block 2
    net['conv2_1'] = Convolution2D(128, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv2_1')(net['pool1'])
    net['conv2_2'] = Convolution2D(128, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv2_2')(net['conv2_1'])
    net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool2')(net['conv2_2'])
    # Block 3
    net['conv3_1'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_1')(net['pool2'])
    net['conv3_2'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_2')(net['conv3_1'])
    net['conv3_3'] = Convolution2D(256, 3, 3,
                                   activation='relu',
                                   border_mode='same',
                                   name='conv3_3')(net['conv3_2'])
    net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
                                name='pool3')(net['conv3_3'])

    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv3_3'])
    num_priors = 6
    x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
                      name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_loc'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
    net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
    name = 'conv4_3_norm_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
                      name=name)(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_conf'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
    net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
    priorbox = PriorBox(img_size, 30.0, max_size=60, aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv4_3_norm_mbox_priorbox')
    net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])

    # Prediction from fc7
    if hasattr(net['conv4_3_norm_mbox_loc_flat'], '_keras_shape'):
        num_boxes = net['conv4_3_norm_mbox_loc_flat']._keras_shape[-1] // 4
    elif hasattr(net['mbox_loc'], 'int_shape'):
        num_boxes = K.int_shape(net['conv4_3_norm_mbox_loc_flat'])[-1] // 4
    net['mbox_loc'] = Reshape((num_boxes, 4),
                              name='mbox_loc_final')(net['conv4_3_norm_mbox_loc_flat'])
    net['mbox_conf'] = Reshape((num_boxes, num_classes),
                               name='mbox_conf_logits')(net['conv4_3_norm_mbox_conf_flat'])
    net['mbox_conf'] = Activation('softmax',
                                  name='mbox_conf_final')(net['mbox_conf'])

    net['predictions'] = merge([net['mbox_loc'],
                               net['mbox_conf'],
                               net['conv4_3_norm_mbox_priorbox']],
                               mode='concat', concat_axis=2,
                               name='predictions')
    model = Model(net['input'], net['predictions'])
    return model