def NN(self, x): assert x.get_shape().as_list()[:3] == [None, 101, 101] summary_images(x, "layer0") x = nn.convolution(x, 16, w=4) # 98 x = nn.convolution(x) # 96 summary_images(x, "layer2") x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) ######################################################################## assert x.get_shape().as_list() == [None, 48, 48, 16] x = nn.convolution(x, 32) # 46 x = nn.convolution(x) # 44 summary_images(x, "layer4") x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) ######################################################################## assert x.get_shape().as_list() == [None, 22, 22, 32] x = nn.convolution(x, 64) # 20 x = nn.convolution(x) # 18 summary_images(x, "layer6") x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 9, 9, 64] x = nn.convolution(x, 128) # 7 summary_images(x, "layer7") x = tf.nn.dropout(x, self.tfkp) x = nn.convolution(x) # 5 x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 5, 5, 128] x = nn.convolution(x, 1024, w=5) ######################################################################## assert x.get_shape().as_list() == [None, 1, 1, 1024] x = tf.reshape(x, [-1, x.get_shape().as_list()[-1]]) self.embedding_input = x x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = nn.batch_normalization(x, self.tfacc) self.test = x x = nn.fullyconnected(x, 1, activation=None) return x
def NN1(self, x): assert x.get_shape().as_list()[:3] == [None, 101, 101] x = nn.convolution(x, 16, w=4) # 98 x = nn.convolution(x) # 96 x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) ######################################################################## assert x.get_shape().as_list() == [None, 48, 48, 16] x = nn.convolution(x, 32) # 46 x = nn.convolution(x) # 44 x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) ######################################################################## assert x.get_shape().as_list() == [None, 22, 22, 32] x = nn.convolution(x, 64) # 20 x = nn.convolution(x) # 18 x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 9, 9, 64] x = nn.convolution(x, 128) # 7 x = tf.nn.dropout(x, self.tfkp) x = nn.convolution(x) # 5 summary_images(x, "nn1") x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 5, 5, 128] x = nn.convolution(x, 1024, w=5) ######################################################################## assert x.get_shape().as_list() == [None, 1, 1, 1024] x = tf.reshape(x, [-1, x.get_shape().as_list()[-1]]) x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = nn.batch_normalization(x, self.tfacc) self.test = x x = nn.fullyconnected(x, 2, activation=None) return x
def NN(self, x): assert x.get_shape().as_list()[:3] == [None, 101, 101] summary_images(x, "layer0") x = nn.convolution(x, 16, w=2) # 100 summary_images(x, "layer1") ######################################################################## assert x.get_shape().as_list() == [None, 100, 100, 16] x = nn.batch_normalization(x, self.tfacc) x = res_layer(x, n=2) # 96 x = nn.batch_normalization(x, self.tfacc) x = res_layer(x, n=2) # 92 summary_images(x, "layer5") x = nn.max_pool(x) ######################################################################## assert x.get_shape().as_list() == [None, 46, 46, 16] x = nn.batch_normalization(x, self.tfacc) x = res_layer(x, 32, n=3) # 40 summary_images(x, "layer8") x = nn.batch_normalization(x, self.tfacc) x = res_layer(x, n=2) # 36 summary_images(x, "layer10") x = nn.max_pool(x) x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 18, 18, 32] x = res_layer(x, 64, n=2) # 14 summary_images(x, "layer12") x = nn.batch_normalization(x, self.tfacc) x = res_layer(x, 92, n=2) # 10 x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) x = res_layer(x, 128, n=3) # 4 x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) ######################################################################## assert x.get_shape().as_list() == [None, 4, 4, 128] x = nn.convolution(x, 1024, w=4) ######################################################################## assert x.get_shape().as_list() == [None, 1, 1, 1024] x = tf.reshape(x, [-1, x.get_shape().as_list()[-1]]) self.embedding_input = x x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = nn.batch_normalization(x, self.tfacc) x = tf.nn.dropout(x, self.tfkp) x = nn.fullyconnected(x, 1024) x = nn.batch_normalization(x, self.tfacc) self.test = x x = nn.fullyconnected(x, 1, activation=None) return x