Пример #1
0
    def testBasic(self):
        features = numpy.indices( (100,100) ).astype(numpy.float32) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, 'xyc')
        labels = numpy.zeros( (100,100,1), dtype=numpy.uint8 )
        labels = vigra.taggedView(labels, 'xyc')
        
        labels[10,10] = 1
        labels[10,11] = 1
        labels[20,20] = 2
        labels[20,21] = 2
        
        graph = Graph()
        opFeatureMatrixCache = OpFeatureMatrixCache(graph=graph)
        opFeatureMatrixCache.FeatureImage.setValue(features)
        opFeatureMatrixCache.LabelImage.setValue(labels)
        
        opFeatureMatrixCache.LabelImage.setDirty( numpy.s_[10:11, 10:12] )
        opFeatureMatrixCache.LabelImage.setDirty( numpy.s_[20:21, 20:22] )
        opFeatureMatrixCache.LabelImage.setDirty( numpy.s_[30:31, 30:32] )

        opTrain = OpTrainClassifierFromFeatureVectors( graph=graph )
        opTrain.ClassifierFactory.setValue( ParallelVigraRfLazyflowClassifierFactory(100) )
        opTrain.MaxLabel.setValue(2)
        opTrain.LabelAndFeatureMatrix.connect( opFeatureMatrixCache.LabelAndFeatureMatrix )
        
        assert opTrain.Classifier.ready()
        
        trained_classifier = opTrain.Classifier.value
        
        # This isn't much of a test at the moment...
        assert isinstance( trained_classifier, ParallelVigraRfLazyflowClassifier ), \
            "classifier is of the wrong type: {}".format(type(trained_classifier))
Пример #2
0
    def testBasic(self):
        features = numpy.indices((100, 100)).astype(numpy.float32) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, "xyc")

        labels = numpy.zeros((100, 100, 1), dtype=numpy.uint8)
        labels = vigra.taggedView(labels, "xyc")

        labels[10, 10] = 1
        labels[10, 11] = 1
        labels[20, 20] = 2
        labels[20, 21] = 2

        graph = Graph()
        # Use a cache for the labels so we can control the ideal_blockshape
        # This ensures that the blockwise behavior is tested, even though we're
        # testing with tiny data that would normally fall into a single block.
        opLabelCache = OpBlockedArrayCache(graph=graph)
        opLabelCache.BlockShape.setValue((10, 10, 1))
        opLabelCache.Input.setValue(labels)

        opFeatureMatrixCache = OpFeatureMatrixCache(graph=graph)
        opFeatureMatrixCache.LabelImage.connect(opLabelCache.Output)
        opFeatureMatrixCache.FeatureImage.setValue(features)

        labels_and_features = opFeatureMatrixCache.LabelAndFeatureMatrix.value
        assert labels_and_features.shape == (
            0, 3), "Empty feature matrix has wrong shape: {}".format(
                labels_and_features.shape)

        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[10:11, 10:12])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[20:21, 20:22])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[30:31, 30:32])

        labels_and_features = opFeatureMatrixCache.LabelAndFeatureMatrix.value
        assert labels_and_features.shape == (4, 3)
        assert (labels_and_features[:, 0] == 1).sum() == 2
        assert (labels_and_features[:, 0] == 2).sum() == 2

        # Can't check for equality because feature blocks can be in a random order.
        # Just check that all features are present, regardless of order.
        for feature_vec in [[10.5, 10.5], [10.5, 11.5], [20.5, 20.5],
                            [20.5, 21.5]]:
            assert feature_vec in labels_and_features[:, 1:]
Пример #3
0
    def _getMatrixOp(self, graph):
        features = numpy.indices((100, 100)).astype(numpy.float32) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, "xyc")
        labels = numpy.zeros((100, 100, 1), dtype=numpy.uint8)
        labels = vigra.taggedView(labels, "xyc")

        labels[10, 10] = 1
        labels[10, 11] = 1
        labels[20, 20] = 2
        labels[20, 21] = 2

        opFeatureMatrixCache = OpFeatureMatrixCache(graph=graph)
        opFeatureMatrixCache.FeatureImage.setValue(features)
        opFeatureMatrixCache.LabelImage.setValue(labels)

        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[10:11, 10:12])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[20:21, 20:22])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[30:31, 30:32])

        return opFeatureMatrixCache
    def testBasic(self):
        features = numpy.indices((100, 100)).astype(numpy.float) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, 'xyc')
        labels = numpy.zeros((100, 100, 1), dtype=numpy.uint8)
        labels = vigra.taggedView(labels, 'xyc')

        labels[10, 10] = 1
        labels[10, 11] = 1
        labels[20, 20] = 2
        labels[20, 21] = 2

        graph = Graph()
        opFeatureMatrixCache = OpFeatureMatrixCache(graph=graph)
        opFeatureMatrixCache.FeatureImage.setValue(features)
        opFeatureMatrixCache.LabelImage.setValue(labels)
        opFeatureMatrixCache.NonZeroLabelBlocks.setValue(0)

        labels_and_features = opFeatureMatrixCache.LabelAndFeatureMatrix.value
        assert labels_and_features.shape == (
            0, 3), "Empty feature matrix has wrong shape: {}".format(
                labels_and_features.shape)

        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[10:11, 10:12])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[20:21, 20:22])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[30:31, 30:32])

        labels_and_features = opFeatureMatrixCache.LabelAndFeatureMatrix.value
        assert labels_and_features.shape == (4, 3)
        assert (labels_and_features[:, 0] == 1).sum() == 2
        assert (labels_and_features[:, 0] == 2).sum() == 2

        # Can't check for equality because feature blocks can be in a random order.
        # Just check that all features are present, regardless of order.
        for feature_vec in [[10.5, 10.5], [10.5, 11.5], [20.5, 20.5],
                            [20.5, 21.5]]:
            assert feature_vec in labels_and_features[:, 1:]