Пример #1
0
import sys
import numpy as np
from ldgp import calcgrad
from ldgp import hist
import easygui
def dist(x,y):
    return np.sqrt(np.sum((x-y)**2))
path=easygui.fileopenbox("select the image")
image=cv2.imread(path,0)
image=cv2.resize(image,(240,240))

naming=np.load("database/naming.npy")
labels=np.load("database/labels.npy")
data=np.load("database/data.npy")
grad=calcgrad(image)
histogram=hist(grad)
a=[]
for i in xrange(len(data)):
	a.append(dist(histogram,data[i]))
b=np.copy(a)
temp=np.copy(labels)
temp2=np.copy(labels)
a,temp=zip(*sorted(zip(a,temp)))
b,locations=zip(*sorted(zip(b,temp2)))
for i in xrange(10):
	
	
Пример #2
0
    print "USAGE python client1.py <ip of server> <port of server>"
ip = sys.argv[1]
port = int(sys.argv[2])
ret = s.connect((ip, port))
#print ret
while True:
    ret, frame = camera.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 2.5, 3)
    for (x, y, w, h) in faces:
        face = gray[y:y + h, x:x + w]
        face = cv2.resize(face, (240, 240))
        gradient = calcgrad(face)
        #gradient=4*gradient
        #gradient=np.array(gradient,dtype='uint8')
        histogram = hist(gradient)
        histogram = str(histogram)
        print 'histogram', histogram
        s.sendall(histogram)
        print 'histogram sent'
        name = s.recv(4096)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
        font = cv2.FONT_HERSHEY_SIMPLEX
        #cv2.putText(frame,naming[labels[0]],(x,y), font, 0.5,(255,255,255),2,cv2.LINE_AA)
        cv2.putText(frame, name, (x, y), font, 0.5, (255, 255, 255), 2,
                    cv2.LINE_AA)
        print ""
    cv2.imshow("original", frame)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break
Пример #3
0
import os
import sys
import numpy as np
import cv2
from ldgp import calcgrad
from ldgp import hist
path = sys.argv[1]
naming = []
labels = []
locations = []
data = []
k = 0
for folders in os.listdir(path):
    folder = path + '/' + folders
    naming.append(folders)
    for images in os.listdir(folder):
        image = folder + '/' + images
        print image
        locations.append(image)
        labels.append(k)
        data.append(
            hist(calcgrad(cv2.resize(cv2.imread(image, 0), (240, 240)))))
    k += 1
os.chdir("database")
np.save("naming", np.array(naming))
np.save("labels", np.array(labels))
np.save("locations", np.array(locations))
np.save("data", np.array(data))