encoder.load_state_dict( torch.load('./result/saved_models/il-uncertainty-02/encoder_119000.pth')) generator.load_state_dict( torch.load('./result/saved_models/il-uncertainty-02/generator_119000.pth')) criterion = torch.nn.MSELoss() e_optimizer = torch.optim.Adam(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) g_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) train_loader = DataLoader(CostMapDataset( data_index=[1, 2, 3, 4, 5, 6, 7, 8, 9], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) test_loader = DataLoader(CostMapDataset( data_index=[10], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=1, shuffle=False, num_workers=1) test_samples = iter(test_loader) def test_traj_v(xs, ys, step):
start_point_criterion = torch.nn.MSELoss() criterion = torch.nn.BCELoss() #.to(device) trajectory_criterion = torch.nn.MSELoss() # e_optimizer = torch.optim.RMSprop(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) g_optimizer = torch.optim.RMSprop(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) #g_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) d_optimizer = torch.optim.RMSprop(discriminator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) #d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) train_loader = DataLoader(CostMapDataset( data_index=[item for item in range(1, 10)], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) test_loader = DataLoader(CostMapDataset( data_index=[10], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=1, shuffle=False, num_workers=1) # test_loader = DataLoader(CostMapDataset(data_index=[8], opt=opt, dataset_path='/media/wang/DATASET/CARLA/town01/'), batch_size=1, shuffle=False, num_workers=1) test_samples = iter(test_loader)
os.makedirs('result/output2/%s' % opt.dataset_name, exist_ok=True) if not opt.test_mode: logger = SummaryWriter(log_dir=log_path) write_params(log_path, parser, description) generator = Generator(opt.vector_dim+2, output=2).to(device) encoder = CNN(input_dim=1, out_dim=128).to(device) criterion = torch.nn.MSELoss() e_optimizer = torch.optim.Adam(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) g_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) train_loader = DataLoader(CostMapDataset(data_index=[1,2,3,4,5,6,7,8,9], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) test_loader = DataLoader(CostMapDataset(data_index=[10], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/'), batch_size=1, shuffle=False, num_workers=1) test_samples = iter(test_loader) def test_traj_v(xs, ys, step): fig = plt.figure(figsize=(7, 7)) ax1 = fig.add_subplot(111) for i in range(len(xs)): ax1.plot(xs[i], ys[i], label=str(round(0.8*i, 1)), linewidth=5) ax1.set_xlabel('Forward/(m)') ax1.set_ylabel('Sideways/(m)') ax1.set_xlim([0., 40]) ax1.set_ylim([-20, 20]) #plt.legend(loc='lower right') #plt.legend(loc='lower right', bbox_to_anchor=(1.0, 0.)) plt.legend(loc='center', bbox_to_anchor=(0.9, 0.5))