type=float, default=0.05, help='discretization minimum time interval') parser.add_argument('--rnn_steps', type=int, default=10, help='rnn readout steps') args = parser.parse_args() data_index = args.data save_path = '/media/wang/DATASET/CARLA/town01/' + str(data_index) + '/' log_path = '/home/cz/result/log/' + args.name + '/' ckpt_path = '/home/cz/result/saved_models/%s' % args.name logger = SummaryWriter(log_dir=log_path) generator = Generator(input_dim=1 + 1 + args.vector_dim, output=2).to(device) model = TD3(args=args, buffer_size=1e5, noise_decay_steps=3e3, batch_size=64, logger=logger, policy_freq=5, is_fix_policy_net=True) #48 85 # encoder = EncoderWithV(input_dim=6, out_dim=args.vector_dim).to(device) try: model.policy_net.load_state_dict( torch.load( '/home/cz/Downloads/learning-uncertainty-master/scripts/encoder_e2e.pth' )) # model.policy_net.load_state_dict(torch.load('/home/cz/result/saved_models/rl-train-img-nav-04-train/115_policy_net.pkl')) model.value_net1.load_state_dict(
if opt.test_mode: opt.batch_size = 1 description = 'dropout' log_path = 'result/log/' + opt.dataset_name + '/' os.makedirs('result/saved_models/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output2/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output3/%s' % opt.dataset_name, exist_ok=True) if not opt.test_mode: logger = SummaryWriter(log_dir=log_path) write_params(log_path, parser, description) # generator = Generator(input_dim=128+32+1+1, output=2).to(device) # discriminator = Discriminator(opt.points_num*2+32+1).to(device) generator = Generator(input_dim=2 + 2 + 1 + 1, output=2).to(device) discriminator = Discriminator(opt.points_num * 2 + 2 + 1).to(device) # encoder = CNN(input_dim=1, out_dim=32).to(device) encoder = CNNNorm(input_dim=1, out_dim=2).to(device) encoder.load_state_dict( torch.load('result/saved_models/il-uncertainty-02/encoder_119000.pth')) # DO NOT TRAIN ENCODER encoder.eval() # discriminator.load_state_dict(torch.load('result/saved_models/train-gan-costmap-01/discriminator_120000.pth')) generator.load_state_dict( torch.load( 'result/saved_models/train-gan-costmap-01/generator_120000.pth')) start_point_criterion = torch.nn.MSELoss() criterion = torch.nn.BCELoss() #.to(device) trajectory_criterion = torch.nn.MSELoss()
parser.add_argument('--max_dist', type=float, default=25., help='max distance') parser.add_argument('--max_speed', type=float, default=10., help='max speed') parser.add_argument('--max_t', type=float, default=3., help='max time') opt = parser.parse_args() if opt.test_mode: opt.batch_size = 1 description = 'wgan-gp mirror v0/opt.max_speed' log_path = 'result/log/' + opt.dataset_name + '/' os.makedirs('result/saved_models/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output2/%s' % opt.dataset_name, exist_ok=True) if not opt.test_mode: logger = SummaryWriter(log_dir=log_path) write_params(log_path, parser, description) generator = Generator(opt.vector_dim + 2).to(device) discriminator = Discriminator(opt.points_num * 2 + 1).to(device) #discriminator.load_state_dict(torch.load('result/saved_models/wgan-gp-10/discriminator_40000.pth')) #generator.load_state_dict(torch.load('result/saved_models/wgan-gp-10/generator_40000.pth')) start_point_criterion = torch.nn.MSELoss() criterion = torch.nn.BCELoss() #.to(device) trajectory_criterion = torch.nn.MSELoss() g_optimizer = torch.optim.RMSprop(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) #g_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) d_optimizer = torch.optim.RMSprop(discriminator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) #d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
global_dict['max_steer_angle'] = 0. global_dict['ipm_image'] = np.zeros((200, 400), dtype=np.uint8) global_dict['ipm_image'].fill(255) global_dict['trans_costmap_dict'] = {} global_dict['state0'] = None global_dict['start_control'] = False random.seed(datetime.now()) torch.manual_seed(999) torch.cuda.manual_seed(999) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') generator = GeneratorUNet() generator = generator.to(device) generator.load_state_dict(torch.load('../ckpt/g.pth')) trajectory_model = Generator(4).to(device) trajectory_model.load_state_dict( torch.load('../result/saved_models/train-gan-02/generator_20000.pth')) trajectory_model.eval() generator.eval() parser = argparse.ArgumentParser(description='Params') parser.add_argument('--name', type=str, default="rl-train-04", help='name of the script') parser.add_argument('-s', '--save', type=bool, default=False, help='save result')
# 'callback':lidar_callback, }, } # param = Param() param = cu.parse_yaml_file_unsafe('./param.yaml') sensor = cu.PesudoSensor(sensor_dict['camera']['transform'], config['camera']) sensor_master = CarlaSensorMaster(sensor, sensor_dict['camera']['transform'], binded=True) # collect_perspective = CollectPerspectiveImage(param, sensor_master) camera_param = cu.CameraParams(sensor) # import pdb; pdb.set_trace() pm = PerspectiveMapping(param, camera_param.K_augment, camera_param.T_img_imu) generator = Generator(opt.vector_dim + 256 + 1 + 1).to(device) discriminator = Discriminator(opt.points_num * 2 + 256 + 1).to(device) encoder = CNN(input_dim=3, out_dim=256).to(device) # discriminator.load_state_dict(torch.load('result/saved_models/train-cgan-12/discriminator_1000.pth')) # generator.load_state_dict(torch.load('result/saved_models/train-cgan-12/generator_1000.pth')) # encoder.load_state_dict(torch.load('result/saved_models/train-cgan-12/encoder_1000.pth')) # discriminator.load_state_dict(torch.load('result/saved_models/train-cgan-01/discriminator_10000.pth')) # generator.load_state_dict(torch.load('result/saved_models/train-cgan-01/generator_10000.pth')) # encoder.load_state_dict(torch.load('result/saved_models/train-cgan-01/encoder_10000.pth')) # discriminator.load_state_dict(torch.load('result/saved_models/train-cgan-09/discriminator_87000.pth')) # generator.load_state_dict(torch.load('result/saved_models/train-cgan-09/generator_87000.pth')) # encoder.load_state_dict(torch.load('result/saved_models/train-cgan-09/encoder_87000.pth')) start_point_criterion = torch.nn.MSELoss() trajectory_criterion = torch.nn.MSELoss() g_optimizer = torch.optim.RMSprop(generator.parameters(),
parser.add_argument('--max_dist', type=float, default=25., help='max distance') parser.add_argument('--max_speed', type=float, default=10., help='max speed') parser.add_argument('--max_t', type=float, default=3., help='max time') opt = parser.parse_args() if opt.test_mode: opt.batch_size = 1 description = 'CNN' log_path = 'result/log/' + opt.dataset_name + '/' os.makedirs('result/saved_models/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output/%s' % opt.dataset_name, exist_ok=True) os.makedirs('result/output2/%s' % opt.dataset_name, exist_ok=True) if not opt.test_mode: logger = SummaryWriter(log_dir=log_path) write_params(log_path, parser, description) generator = Generator(opt.vector_dim + 2, output=4).to(device) # generator.load_state_dict(torch.load('./result/saved_models/il-uncertainty-02/generator_119000.pth')) encoder = CNN(input_dim=1, out_dim=opt.vector_dim).to(device) encoder.load_state_dict( torch.load('./result/saved_models/il-uncertainty-02/encoder_119000.pth')) generator.load_state_dict( torch.load('./result/saved_models/il-uncertainty-02/generator_119000.pth')) criterion = torch.nn.MSELoss() e_optimizer = torch.optim.Adam(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) g_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lr,