global_trans_costmap_list = [] global_trans_costmap_dict = {} MAX_SPEED = 30 img_height = 128 img_width = 256 #longitudinal_length = 25.0 # [m] random.seed(datetime.now()) torch.manual_seed(999) torch.cuda.manual_seed(999) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') generator = GeneratorUNet() generator = generator.to(device) model = ModelGRU().to(device) generator.eval() model.eval() parser = argparse.ArgumentParser(description='Params') parser.add_argument('-d', '--data', type=int, default=1, help='data index') parser.add_argument('-s', '--save', type=bool, default=False, help='save result') parser.add_argument('--width', type=int, default=400, help='image width') parser.add_argument('--height', type=int, default=200, help='image height') parser.add_argument('--max_dist', type=float, default=25., help='max distance') parser.add_argument('--max_t', type=float, default=3., help='max time') parser.add_argument('--scale', type=float, default=25., help='longitudinal length') parser.add_argument('--dt', type=float, default=0.03, help='discretization minimum time interval') parser.add_argument('--rnn_steps', type=int, default=10, help='rnn readout steps')
parser = argparse.ArgumentParser() parser.add_argument('--img_height', type=int, default=128, help='size of image height') parser.add_argument('--img_width', type=int, default=256, help='size of image width') opt = parser.parse_args() random.seed(datetime.now()) torch.manual_seed(999) device = torch.device('cpu') generator = GeneratorUNet() generator = generator.to(device) generator.load_state_dict(torch.load('../../ckpt/g.pth', map_location=device)) generator.eval() img_trans_ = [ transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] img_trans = transforms.Compose(img_trans_) def get_nav(): global nav_maker
if not opt.eval: logger = SummaryWriter(log_dir=log_path) write_params(log_path, parser, description) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Loss functions criterion_GAN = torch.nn.MSELoss() criterion_pixelwise = torch.nn.L1Loss() # Loss weight of L1 pixel-wise loss between translated image and real image lambda_pixel = 100 # Calculate output of image discriminator (PatchGAN) patch = (1, opt.img_height//2**4, opt.img_width//2**4) generator = GeneratorUNet() discriminator = Discriminator() generator = generator.to(device) discriminator = discriminator.to(device) #generator.load_state_dict(torch.load('../../ckpt/sim/g.pth')) #discriminator.load_state_dict(torch.load('../../ckpt/sim/d.pth')) criterion_GAN.to(device) criterion_pixelwise.to(device) #unet encode # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
global_img = None global_pcd = None global_nav = None global_vel = 0. MAX_SPEED = 20 img_height = 128 img_width = 256 longitudinal_length = 25.0 # [m] random.seed(datetime.now()) torch.manual_seed(999) torch.cuda.manual_seed(999) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') generator = GeneratorUNet() generator = generator.to(device) generator.load_state_dict(torch.load('../ckpt/sim/g.pth')) model = Model_COS().to(device) model.load_state_dict(torch.load('../ckpt/sim/model.pth')) generator.eval() model.eval() parser = argparse.ArgumentParser(description='Params') parser.add_argument('-d', '--data', type=int, default=1, help='data index') parser.add_argument('-n', '--num', type=int, default=100000, help='total number') parser.add_argument('--width', type=int, default=400, help='image width') parser.add_argument('--height', type=int, default=200, help='image height') parser.add_argument('--max_dist', type=float, default=20., help='max distance') parser.add_argument('--max_t', type=float, default=5., help='max time') parser.add_argument('--scale', type=float, default=25., help='longitudinal length')
global_dict['plan_map'] = None global_dict['transform'] = None global_dict['draw_cost_map'] = None global_dict['max_steer_angle'] = 0. global_dict['ipm_image'] = np.zeros((200, 400), dtype=np.uint8) global_dict['ipm_image'].fill(255) global_dict['trans_costmap_dict'] = {} global_dict['state0'] = None global_dict['start_control'] = False random.seed(datetime.now()) torch.manual_seed(999) torch.cuda.manual_seed(999) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') generator = GeneratorUNet() generator = generator.to(device) generator.load_state_dict( torch.load('/home/cz/Downloads/learning-uncertainty-master/scripts/g.pth')) trajectory_model = Generator(4).to(device) trajectory_model.load_state_dict( torch.load( '/home/cz/Downloads/learning-uncertainty-master/scripts/generator_1924000.pth' )) trajectory_model.eval() generator.eval() parser = argparse.ArgumentParser(description='Params') parser.add_argument('--name', type=str, default="rl-train-08",