def answer(test_path): import warnings warnings.filterwarnings("ignore") import time t0 = time.time() from learning import process_test_data, training_data, training_answers from sklearn.cluster.k_means_ import KMeans from sklearn.linear_model.logistic import LogisticRegression test_data = process_test_data(test_path) km = KMeans() km.fit(training_data, training_answers) myNum = km.predict(test_data).item() numX = [1, 2, 4, 2, 7, 0, 2, 7, 4, 3, 2, 1, 4, 5, 5, 1, 3, 0, 4, 2] numbers = [[num] for num in numX] letX = [ 'a', 'a', 'o', 'a', 'o', 'o', 'a', 'a', 'o', 'a', 'a', 'o', 'a', 'o', 'o', 'o', 'a', 'a', 'o', 'a' ] letters = [[letter] for letter in letX] lr = LogisticRegression() lr.fit(numbers, letters) ans = lr.predict(myNum).item() t1 = time.time() return [ans, t1 - t0]
def answer(test_path): import time t0 = time.time() from learning import process_test_data, training_data, training_answers from sklearn.neural_network import MLPClassifier test_data = process_test_data(test_path) mlp = MLPClassifier() mlp.fit(training_data, training_answers) ans = mlp.predict(test_data).item() t1 = time.time() return [ans, t1 - t0]
def answer(test_path): import time t0 = time.time() from learning import process_test_data, training_data, training_answers from sklearn.linear_model.logistic import LogisticRegression test_data = process_test_data(test_path) lr = LogisticRegression() lr.fit(training_data, training_answers) ans = lr.predict(test_data).item() t1 = time.time() return [ans, t1 - t0]
def answer(test_path): import time t0 = time.time() from learning import process_test_data, training_data, training_answers from sklearn.neighbors import KNeighborsClassifier test_data = process_test_data(test_path) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(training_data, training_answers) ans = knn.predict(test_data) t1 = time.time() return [ans, t1 - t0]
def answer(test_path): import time t0 = time.time() from learning import process_test_data, training_data, training_answers from sklearn import tree test_data = process_test_data(test_path) clf = tree.DecisionTreeClassifier() clf.fit(training_data, training_answers) ans = clf.predict(test_data) t1 = time.time() return [ans, t1 - t0]