def test_mlp_classifier_convergence(): # Run until convergence # assert that network can converge model = mlp.MLP( (2, 3, 2), transfers=SoftmaxTransfer(), error_func=CrossEntropyError()) dataset = datasets.get_and() model.train(*dataset, retries=5, error_break=0.002) assert validation.get_error(model, *dataset) <= 0.02
def test_mlp_classifier(): # Run for a couple of iterations # assert that new error is less than original model = mlp.MLP( (2, 2, 2), transfers=SoftmaxTransfer(), error_func=CrossEntropyError()) dataset = datasets.get_xor() error = validation.get_error(model, *dataset) model.train(*dataset, iterations=20) assert validation.get_error(model, *dataset) < error
def test_dropout_mlp_classifier_convergence(): # Run until convergence # assert that network can converge # Since XOR does not really need dropout, we use high probabilities model = mlp.DropoutMLP( (2, 8, 2), transfers=SoftmaxTransfer(), error_func=CrossEntropyError(), input_active_probability=1.0, hidden_active_probability=0.9) dataset = datasets.get_and() # Error break lower than cutoff, since dropout may have different error # after training model.train(*dataset, retries=5, error_break=0.002, error_improve_iters=50) # Dropout sacrifices training accuracy for better generalization # so we don't worry as much about convergence assert validation.get_error(model, *dataset) <= 0.1
from learning import optimize # To customize the training of our MLP # Grab the popular iris dataset, from our library of datasets dataset = datasets.get_iris() # Make a multilayer perceptron to classify the iris dataset model = MLP( # The MLP will take 4 attributes, have 1 hidden layer with 2 neurons, # and outputs one of 3 classes (4, 2, 3), # We will use a softmax output layer for this classification problem # Because we are only changing the output transfer, we pass a single # Transfer object. We could customize all transfer layers by passing # a list of Transfer objects. transfers=SoftmaxTransfer(), # Cross entropy error will pair nicely with our softmax output. error_func=CrossEntropyError(), # Lets use the quasi-newton BFGS optimizer for this problem # BFGS requires and n^2 operation, where n is the number of weights, # but this isn't a problem for our relatively small MLP. # If we don't want to deal with optimizers, the default # option will select an appropriate optimizer for us. optimizer=optimize.BFGS( # We can even customize the line search method step_size_getter=optimize.WolfeLineSearch( # And the initial step size for our line search initial_step_getter=optimize.FOChangeInitialStep())))
def test_mlp_jacobian_softmax_out_ce(): _check_jacobian(lambda s1, s2, s3: mlp.MLP( (s1, s2, s3), transfers=SoftmaxTransfer(), error_func=CrossEntropyError()))
def test_mlp_jacobian_softmax_out_mse(): _check_jacobian(lambda s1, s2, s3: mlp.MLP( (s1, s2, s3), transfers=SoftmaxTransfer(), error_func=MeanSquaredError()))
def test_mlp_obj_and_obj_jac_match_softmax_out_ce(): _check_obj_and_obj_jac_match( lambda s1, s2, s3: mlp.MLP( (s1, s2, s3), transfers=SoftmaxTransfer(), error_func=CrossEntropyError()), classification=True )
def test_mlp_obj_and_obj_jac_match_softmax_out_mse(): _check_obj_and_obj_jac_match(lambda s1, s2, s3: mlp.MLP( (s1, s2, s3), transfers=SoftmaxTransfer(), error_func=MeanSquaredError()))