Пример #1
0
def test_group():

	conv_ensemble_sparse = Ensemble.fromfilelist(map_list)
	conv_ensemble_sparse.load(callback_loader=default_callback_loader,pool=pool,l_edges=l_edges)
	conv_ensemble_sparse.group(group_size=2,kind="sparse")
	
	assert conv_ensemble_sparse.num_realizations==2

	conv_ensemble_contiguous = Ensemble.fromfilelist(map_list)
	conv_ensemble_contiguous.load(callback_loader=default_callback_loader,pool=pool,l_edges=l_edges)
	conv_ensemble_contiguous.group(group_size=2,kind="contiguous")
	
	assert conv_ensemble_contiguous.num_realizations==2

	fig,ax = plt.subplots()
	for n in range(conv_ensemble.num_realizations):
		ax.plot(l,l*(l+1)*conv_ensemble.data[n]/(2.0*np.pi),label="Original {0}".format(n+1),linestyle="-")

	for n in range(conv_ensemble_sparse.num_realizations):
		ax.plot(l,l*(l+1)*conv_ensemble_sparse.data[n]/(2.0*np.pi),label="Sparse {0}".format(n+1),linestyle="--")

	for n in range(conv_ensemble_contiguous.num_realizations):
		ax.plot(l,l*(l+1)*conv_ensemble_contiguous.data[n]/(2.0*np.pi),label="Contiguous {0}".format(n+1),linestyle="-.")

	ax.set_xscale("log")
	ax.set_yscale("log")
	ax.set_xlabel(r"$l$")
	ax.set_ylabel(r"$l(l+1)P_l/2\pi$")
	ax.legend(loc="upper left",prop={"size":7})

	plt.savefig("power_ensemble_grouped.png")
	plt.clf()

	return conv_ensemble_sparse._scheme,conv_ensemble_contiguous._scheme
Пример #2
0
def test_add():

	conv_ensemble1 = Ensemble.fromfilelist(map_list[0:2])
	conv_ensemble2 = Ensemble.fromfilelist(map_list[2:])

	conv_ensemble1.load(callback_loader=default_callback_loader,pool=None,l_edges=l_edges)
	conv_ensemble2.load(callback_loader=default_callback_loader,pool=None,l_edges=l_edges)

	conv_ensemble_union = conv_ensemble1 + conv_ensemble2

	assert conv_ensemble_union.num_realizations == 4
	assert len(conv_ensemble_union.file_list) == 4
	assert conv_ensemble_union.data.shape[0] == 4
	assert conv_ensemble_union.data.shape[1] == conv_ensemble1.data.shape[1]
Пример #3
0
def test_selfChi2():

    ens = Ensemble.read(
        "Data/all/Om0.295_Ol0.705_w-1.878_ns0.960_si0.100/subfield1/sigma05/power_spectrum.npy"
    )
    chi2 = ens.selfChi2()
    assert chi2.shape[0] == ens.data.shape[0]

    #Plot histogram
    fig, ax = plt.subplots()
    n, bins, patch = ax.hist(chi2,
                             bins=50,
                             normed=True,
                             histtype="stepfilled",
                             alpha=0.5)

    #Compare to chi2 distribution
    ax.plot(stats.chi2.pdf(bins, ens.data.shape[1]))

    #Labels
    ax.set_xlabel(r"$\chi^2$")
    ax.set_ylabel(r"$P(\chi^2)$")

    #Save figure
    fig.savefig("self_chi2.png")
Пример #4
0
def test_group():

    conv_ensemble_sparse = Ensemble.fromfilelist(map_list)
    conv_ensemble_sparse.load(callback_loader=default_callback_loader,
                              pool=pool,
                              l_edges=l_edges)
    conv_ensemble_sparse.group(group_size=2, kind="sparse")

    assert conv_ensemble_sparse.num_realizations == 2

    conv_ensemble_contiguous = Ensemble.fromfilelist(map_list)
    conv_ensemble_contiguous.load(callback_loader=default_callback_loader,
                                  pool=pool,
                                  l_edges=l_edges)
    conv_ensemble_contiguous.group(group_size=2, kind="contiguous")

    assert conv_ensemble_contiguous.num_realizations == 2

    fig, ax = plt.subplots()
    for n in range(conv_ensemble.num_realizations):
        ax.plot(l,
                l * (l + 1) * conv_ensemble.data[n] / (2.0 * np.pi),
                label="Original {0}".format(n + 1),
                linestyle="-")

    for n in range(conv_ensemble_sparse.num_realizations):
        ax.plot(l,
                l * (l + 1) * conv_ensemble_sparse.data[n] / (2.0 * np.pi),
                label="Sparse {0}".format(n + 1),
                linestyle="--")

    for n in range(conv_ensemble_contiguous.num_realizations):
        ax.plot(l,
                l * (l + 1) * conv_ensemble_contiguous.data[n] / (2.0 * np.pi),
                label="Contiguous {0}".format(n + 1),
                linestyle="-.")

    ax.set_xscale("log")
    ax.set_yscale("log")
    ax.set_xlabel(r"$l$")
    ax.set_ylabel(r"$l(l+1)P_l/2\pi$")
    ax.legend(loc="upper left", prop={"size": 7})

    plt.savefig("power_ensemble_grouped.png")
    plt.clf()

    return conv_ensemble_sparse._scheme, conv_ensemble_contiguous._scheme
Пример #5
0
def test_index():

    #Decide the statistical descriptors to measure, and build an index
    idx = Indexer.stack([
        PowerSpectrum(l_edges),
        Peaks(thresholds_pk, norm=True),
        MinkowskiAll(thresholds_mf, norm=True),
        PDF(thresholds_mf, norm=True),
        Moments(connected=True)
    ])
    l = idx[0].l
    v = idx[1].midpoints
    v_mf = idx[2].midpoints

    #Initiate the statistical ensemble
    ens = Ensemble.fromfilelist(map_list)

    #Load measurements into the ensemble (this is the expensive part!!!)
    ens.load(callback_loader=convergence_measure_all, pool=None, index=idx)

    #Split the ensemble in power_spectrum,peaks, and the second and third minkowski functional
    mink_idx = idx[2].separate()
    subset_idx = Indexer([idx[0], idx[1], idx[3], mink_idx[2], idx[-1]])

    ens_pow, ens_pk, ens_pdf, ens_mink2, ens_mom = ens.split(subset_idx)

    #####################################################################

    #Plot to check
    fig, ax = plt.subplots(2, 2, figsize=(16, 16))
    for i in range(ens.num_realizations):

        ax[0, 0].plot(l, l * (l + 1) * ens_pow.data[i] / (2.0 * np.pi))
        ax[0, 1].plot(v, ens_pk.data[i])
        ax[1, 0].plot(v_mf, ens_pdf.data[i])
        ax[1, 1].plot(v_mf, ens_mink2.data[i])

    ax[0, 0].set_xscale("log")
    ax[0, 0].set_yscale("log")

    ax[0, 0].set_xlabel(r"$l$")
    ax[0, 0].set_ylabel(r"$l(l+1)P_l/2\pi$")

    ax[0, 1].set_xlabel(r"$\nu$")
    ax[0, 1].set_ylabel(r"$dN/d\nu$")

    ax[1, 0].set_xlabel(r"$\nu$")
    ax[1, 0].set_ylabel(r"$P(\nu)$")

    ax[1, 1].set_xlabel(r"$\nu$")
    ax[1, 1].set_ylabel(r"$V_2(\nu)$")

    fig.tight_layout()

    plt.savefig("conv_all.png")
    plt.clf()

    #Save moments to check
    np.savetxt("moments.txt", ens_mom.mean())
Пример #6
0
def test_save_and_load():

    conv_ensemble.save("ensemble_saved.npy")
    conv_ensemble.save("ensemble_saved", format="matlab", appendmat=True)
    conv_ensemble_new = Ensemble.read("ensemble_saved.npy")

    assert conv_ensemble_new.num_realizations == conv_ensemble.num_realizations
    assert conv_ensemble_new.data.shape == conv_ensemble.data.shape
Пример #7
0
def test_save_and_load():

	conv_ensemble.save("ensemble_saved.npy")
	conv_ensemble.save("ensemble_saved",format="matlab",appendmat=True)
	conv_ensemble_new = Ensemble.read("ensemble_saved.npy")

	assert conv_ensemble_new.num_realizations == conv_ensemble.num_realizations
	assert conv_ensemble_new.data.shape == conv_ensemble.data.shape
Пример #8
0
def test_add():

    conv_ensemble1 = Ensemble.fromfilelist(map_list[0:2])
    conv_ensemble2 = Ensemble.fromfilelist(map_list[2:])

    conv_ensemble1.load(callback_loader=default_callback_loader,
                        pool=None,
                        l_edges=l_edges)
    conv_ensemble2.load(callback_loader=default_callback_loader,
                        pool=None,
                        l_edges=l_edges)

    conv_ensemble_union = conv_ensemble1 + conv_ensemble2

    assert conv_ensemble_union.num_realizations == 4
    assert len(conv_ensemble_union.file_list) == 4
    assert conv_ensemble_union.data.shape[0] == 4
    assert conv_ensemble_union.data.shape[1] == conv_ensemble1.data.shape[1]
Пример #9
0
def test_chi2():

    conv_ensemble1 = Ensemble.fromfilelist(map_list[0:2])
    conv_ensemble1.load(callback_loader=default_callback_loader,
                        pool=None,
                        l_edges=l_edges)

    print("chi2 difference = {0}".format(
        conv_ensemble.compare(conv_ensemble1)))
Пример #10
0
def test_multiply():

	conv_ensemble_peaks = Ensemble.fromfilelist(map_list)
	conv_ensemble_peaks.load(callback_loader=peaks_loader,pool=None,thresholds=thresholds_pk)

	conv_ensemble_both = conv_ensemble * conv_ensemble_peaks

	assert conv_ensemble_both.num_realizations == 4
	assert conv_ensemble_both.data.shape[0] == 4
	assert conv_ensemble_both.data.shape[1] == len(l_edges) + len(thresholds_pk) - 2
Пример #11
0
def confusionMatrix(descriptor,measurement_list,measurement_covariance):

	#Instantiate a FisherAnalysis instance
	analysis = FisherAnalysis()

	#Populate with the models
	for measurement in measurement_list:
		ens = Ensemble.read(measurement.savename(descriptor))
		analysis.add_model(measurement.model.squeeze(with_ns=True),ens.mean())

	#Compute the covariance matrix
	covariance = Ensemble.read(measurement_covariance.savename(descriptor)).covariance()

	#################################################################################
	#####Now we are ready to compute the confusion matrix, for each parameter########
	#################################################################################

	#Allocate space for confusion matrix
	confusion_matrix = np.zeros((4,3,3))

	#Find where are the variations for each model parameter
	locations = analysis.where()

	#Cycle over parameters
	for n in range(4):

		l0 = analysis._fiducial
		l1,l2 = locations[n]

		print("[+] n={0}, fiducial: {1}, variation 1: {2}, variation 2:{3}".format(n,analysis.parameter_set[l0],analysis.parameter_set[l1],analysis.parameter_set[l2]))

		for i,m in enumerate([l0,l1,l2]):
		
			#Load the ensemble
			ens = Ensemble.read(measurement_list[m].savename(descriptor))
			
			#Compute the confusion matrix
			confusion_matrix[n,i] = analysis.classify(ens.data,covariance,labels=[l0,l1,l2],confusion=True)


	#Return the confusion matrix for the selected descriptor
	return confusion_matrix
Пример #12
0
def test_index():

	#Decide the statistical descriptors to measure, and build an index
	idx = Indexer.stack([PowerSpectrum(l_edges),Peaks(thresholds_pk,norm=True),MinkowskiAll(thresholds_mf,norm=True),PDF(thresholds_mf,norm=True),Moments(connected=True)])
	l = idx[0].l
	v = idx[1].midpoints
	v_mf = idx[2].midpoints

	#Initiate the statistical ensemble
	ens = Ensemble.fromfilelist(map_list)

	#Load measurements into the ensemble (this is the expensive part!!!)
	ens.load(callback_loader=convergence_measure_all,pool=None,index=idx)

	#Split the ensemble in power_spectrum,peaks, and the second and third minkowski functional
	mink_idx = idx[2].separate()
	subset_idx = Indexer([idx[0],idx[1],idx[3],mink_idx[2],idx[-1]])

	ens_pow,ens_pk,ens_pdf,ens_mink2,ens_mom = ens.split(subset_idx)

	#####################################################################

	#Plot to check
	fig,ax = plt.subplots(2,2,figsize=(16,16))
	for i in range(ens.num_realizations):
		
		ax[0,0].plot(l,l*(l+1)*ens_pow.data[i]/(2.0*np.pi))
		ax[0,1].plot(v,ens_pk.data[i])
		ax[1,0].plot(v_mf,ens_pdf.data[i])
		ax[1,1].plot(v_mf,ens_mink2.data[i])

	ax[0,0].set_xscale("log")
	ax[0,0].set_yscale("log")

	ax[0,0].set_xlabel(r"$l$")
	ax[0,0].set_ylabel(r"$l(l+1)P_l/2\pi$")

	ax[0,1].set_xlabel(r"$\nu$")
	ax[0,1].set_ylabel(r"$dN/d\nu$")

	ax[1,0].set_xlabel(r"$\nu$")
	ax[1,0].set_ylabel(r"$P(\nu)$")

	ax[1,1].set_xlabel(r"$\nu$")
	ax[1,1].set_ylabel(r"$V_2(\nu)$")

	fig.tight_layout()

	plt.savefig("conv_all.png")
	plt.clf()

	#Save moments to check
	np.savetxt("moments.txt",ens_mom.mean())
Пример #13
0
def test_multiply():

    conv_ensemble_peaks = Ensemble.fromfilelist(map_list)
    conv_ensemble_peaks.load(callback_loader=peaks_loader,
                             pool=None,
                             thresholds=thresholds_pk)

    conv_ensemble_both = conv_ensemble * conv_ensemble_peaks

    assert conv_ensemble_both.num_realizations == 4
    assert conv_ensemble_both.data.shape[0] == 4
    assert conv_ensemble_both.data.shape[1] == len(l_edges) + len(
        thresholds_pk) - 2
Пример #14
0
def test_pca():

    pca_ensemble = Ensemble.read("Data/ensemble_pca.npy")
    pca = pca_ensemble.principalComponents()
    assert len(pca.explained_variance_) == pca_ensemble.data.shape[1]

    fig, ax = plt.subplots(1, 2, figsize=(16, 8))
    ax[0].plot(pca.explained_variance_)
    ax[1].plot(pca.explained_variance_.cumsum())
    ax[0].set_xlabel(r"$n$")
    ax[1].set_xlabel(r"$n$")
    ax[0].set_ylabel(r"$\lambda_n$")
    ax[1].set_ylabel(r"$\sum^n\lambda_n$")

    fig.savefig("pca.png")
Пример #15
0
def test_pca():

	pca_ensemble = Ensemble.read("Data/ensemble_pca.npy")
	pca = pca_ensemble.principalComponents()
	assert len(pca.explained_variance_)==pca_ensemble.data.shape[1]
	
	fig,ax = plt.subplots(1,2,figsize=(16,8))
	ax[0].plot(pca.explained_variance_)
	ax[1].plot(pca.explained_variance_.cumsum())
	ax[0].set_xlabel(r"$n$")
	ax[1].set_xlabel(r"$n$")
	ax[0].set_ylabel(r"$\lambda_n$")
	ax[1].set_ylabel(r"$\sum^n\lambda_n$")

	fig.savefig("pca.png")
Пример #16
0
	def measure_hough(self,pool=None,threshold=0.1,bins=np.linspace(0.0,0.0014,50),save_type="npy"):

		assert self.measurer==igs1_measure_hough

		realizations = range(1,self.nrealizations+1)

		#Build the ensemble
		ens = Ensemble.fromfilelist(realizations)

		#Load the data into the ensemble by calling the measurer on each map
		ens.load(callback_loader=self.measurer,pool=pool,model=self.model,redshift=self.redshift,big_fiducial_set=self.big_fiducial_set,threshold=threshold,bins=bins)

		#Save
		savename = self.savename(descriptor="hough")
		logging.info("Saving hough histograms to {0}".format(savename))
		ens.save(savename)
Пример #17
0
def measure_all_histograms(models,options,pool):

	#Look at a sample map
	sample_map = ConvergenceMap.fromfilename(models[0].getNames(z=1.0,realizations=[1])[0],loader=load_fits_default_convergence)
	#Initialize Gaussian shape noise generator for the sample map shape and angle
	generator = GaussianNoiseGenerator.forMap(sample_map)

	#Parsed from options
	num_realizations = options.getint("analysis","num_realizations")
	smoothing_scales = [float(scale) for scale in options.get("analysis","smoothing_scales").split(",")]
	bin_edges = np.ogrid[options.getfloat("analysis","bin_edge_low"):options.getfloat("analysis","bin_edge_high"):(options.getint("analysis","num_bins") - 2)*1j]
	bin_edges = np.hstack((-10.0,bin_edges,10.0))
	z = options.getfloat("analysis","redshift")

	bin_midpoints = 0.5*(bin_edges[1:] + bin_edges[:-1])
	

	#Create smoothing scale index for the histograms
	idx = Indexer.stack([PDF(bin_edges) for scale in smoothing_scales])

	#Build the data type of the structure array in output
	data_type = [(model.name,Ensemble) for model in models]
	#Append info about the smoothing scale
	data_type = [("Smooth",np.float),] + data_type

	#Create output struct array
	ensemble_array = np.zeros(len(smoothing_scales),dtype=data_type)

	#Write smoothing scale information
	ensemble_array["Smooth"] = np.array(smoothing_scales)
	
	#The for loop runs the distributed computations
	for model in models:

		#Build Ensemble instance with the maps to analyze
		map_ensemble = Ensemble.fromfilelist(range(1,num_realizations+1))
		
		#Measure the histograms and load the data in the ensemble
		map_ensemble.load(callback_loader=compute_map_histograms,pool=pool,simulation_set=model,smoothing_scales=smoothing_scales,index=idx,generator=generator,bin_edges=bin_edges,redshift=z)

		#Split the ensemble between different smoothing scales
		map_ensemble_list = map_ensemble.split(idx)

		#Add to output struct array
		ensemble_array[model.name] = np.array(map_ensemble_list)

	return ensemble_array
Пример #18
0
	def measure(self,pool=None):
		"""
		Measures the features specified in the Indexer for all the maps whose names are calculated by get_all_map_names; saves the ensemble results in numpy array format

		"""

		#Build the ensemble
		ens = Ensemble.fromfilelist(self.map_names)

		#Load the data into the ensemble by calling the measurer on each map
		ens.load(callback_loader=self.measurer,pool=pool,**self.kwargs)

		#Break the ensemble into sub-ensemble, one for each feature
		single_feature_ensembles = ens.split(self.kwargs["index"])

		#For each of the sub_ensembles, save it in the appropriate directory
		for n,ensemble in enumerate(single_feature_ensembles):
			ensemble.save(os.path.join(self.full_save_path,self.kwargs["index"][n].name) + ".npy")
Пример #19
0
def test_selfChi2():

	ens = Ensemble.read("Data/all/Om0.295_Ol0.705_w-1.878_ns0.960_si0.100/subfield1/sigma05/power_spectrum.npy")
	chi2 = ens.selfChi2()
	assert chi2.shape[0]==ens.data.shape[0]

	#Plot histogram
	fig,ax = plt.subplots()
	n,bins,patch = ax.hist(chi2,bins=50,normed=True,histtype="stepfilled",alpha=0.5)

	#Compare to chi2 distribution
	ax.plot(stats.chi2.pdf(bins,ens.data.shape[1]))

	#Labels
	ax.set_xlabel(r"$\chi^2$")
	ax.set_ylabel(r"$P(\chi^2)$")

	#Save figure
	fig.savefig("self_chi2.png")
Пример #20
0
def test_differentiate():

    thresholds = np.arange(-0.04, 0.12, 0.001)
    midpoints = 0.5 * (thresholds[:-1] + thresholds[1:])

    index = Indexer.stack([MinkowskiAll(thresholds)])
    index_separate = Indexer(MinkowskiAll(thresholds).separate())

    diff_ensemble = Ensemble.fromfilelist(map_list)
    diff_ensemble.load(callback_loader=convergence_measure_all, index=index)

    ensemble_0 = diff_ensemble.split(index_separate)[0]
    ensemble_pdf = ensemble_0.differentiate(step=thresholds[0] - thresholds[1])

    fig, ax = plt.subplots()
    for i in range(ensemble_0.num_realizations):
        ax.plot(0.5 * (midpoints[:-1] + midpoints[1:]), ensemble_pdf[i])

    ax.set_xlabel(r"$\kappa$")
    ax.set_ylabel(r"$P(\kappa)$")

    fig.savefig("ensemble_differentiate.png")
Пример #21
0
def test_differentiate():

	thresholds = np.arange(-0.04,0.12,0.001)
	midpoints = 0.5*(thresholds[:-1] + thresholds[1:])

	index = Indexer.stack([MinkowskiAll(thresholds)])
	index_separate = Indexer(MinkowskiAll(thresholds).separate())
	
	diff_ensemble = Ensemble.fromfilelist(map_list)
	diff_ensemble.load(callback_loader=convergence_measure_all,index=index)

	ensemble_0 = diff_ensemble.split(index_separate)[0]
	ensemble_pdf = ensemble_0.differentiate(step=thresholds[0]-thresholds[1])

	fig,ax = plt.subplots()
	for i in range(ensemble_0.num_realizations):
		ax.plot(0.5*(midpoints[:-1]+midpoints[1:]),ensemble_pdf[i])
		
	ax.set_xlabel(r"$\kappa$")
	ax.set_ylabel(r"$P(\kappa)$")

	fig.savefig("ensemble_differentiate.png")
Пример #22
0
	def measure(self,pool=None,save_type="npy"):
		"""
		Measures the features specified in the Indexer for all the maps whose names are calculated by get_all_map_names; saves the ensemble results in numpy array format

		"""

		realizations = range(1,self.nrealizations+1)

		#Build the ensemble
		ens = Ensemble.fromfilelist(realizations)

		#Load the data into the ensemble by calling the measurer on each map
		ens.load(callback_loader=self.measurer,pool=pool,model=self.model,index=self.index,mask_filename=None,redshift=self.redshift,big_fiducial_set=self.big_fiducial_set)

		#Break the ensemble into sub-ensemble, one for each feature
		single_feature_ensembles = ens.split(self.index)

		#For each of the sub_ensembles, save it in the appropriate directory
		for n,ensemble in enumerate(single_feature_ensembles):
			
			savename = self.savename(descriptor=self.index[n])
			logging.debug("Saving features to {0}".format(savename))
			ensemble.save(savename)
Пример #23
0
map_mock_ids = range(int(sys.argv[1]))

igs1_set = IGS1(
    root_path=
    "/Users/andreapetri/Documents/Columbia/spurious_shear/convergence_maps")
map_igs1_ids = igs1_set.getNames(z=1.0,
                                 realizations=range(1,
                                                    int(sys.argv[1]) + 1))

gen = GaussianNoiseGenerator(shape=(2048, 2048),
                             side_angle=3.41 * deg,
                             label="convergence")
power_func = np.loadtxt("Data/ee4e-7.txt", unpack=True)

ens_mock = Ensemble.fromfilelist(map_mock_ids)
ens_igs1 = Ensemble.fromfilelist(map_igs1_ids)

ens_mock.load(callback_loader=generate_and_measure,
              pool=pool,
              generator=gen,
              power_func=power_func)
ens_igs1.load(callback_loader=measure_from_IGS1, pool=pool)

if pool is not None:
    pool.close()

np.savetxt(
    "moments_mock.txt",
    np.array([ens_mock.mean(),
              np.sqrt(ens_mock.covariance().diagonal())]))
Пример #24
0
def test_interpolation():

    root_path = "Data/all"
    analysis = LikelihoodAnalysis()

    #Read in model names
    models = CFHTemu1.getModels()[:17]
    assert len(models) == 17

    #Shuffle the models
    np.random.seed(1)
    np.random.shuffle(models)

    #Divide into training and testing
    training_models = models[:-1]
    testing_model = models[-1]

    #Read multipoles
    ell = np.load(os.path.join(root_path, "ell.npy"))

    #Load in the means of the power spectra of the 17 models, and populate the analysis instance
    for model in training_models:

        ens = Ensemble.fromfilelist([
            os.path.join(root_path, model._cosmo_id_string, "subfield1",
                         "sigma05", "power_spectrum.npy")
        ])
        ens.load(from_old=True)

        analysis.add_model(parameters=model.squeeze(with_ns=True),
                           feature=ens.mean())

    #Add the multipoles to the analysis
    analysis.add_feature_label(ell)
    l = analysis.feature_label

    ens = Ensemble.fromfilelist([
        os.path.join(root_path, testing_model._cosmo_id_string, "subfield1",
                     "sigma05", "power_spectrum.npy")
    ])
    ens.load(from_old=True)
    testing_Pl = ens.mean()

    #Load in also the observed power spectrum
    ens = Ensemble.fromfilelist([
        os.path.join(root_path, "observations", "subfield1", "sigma05",
                     "power_spectrum.npy")
    ])
    ens.load(from_old=True)
    observed_Pl = ens.mean()

    #Output the analysis stats
    np.savetxt("16_parameter_points.txt", analysis.parameter_set)

    for n in range(len(training_models)):

        plt.plot(l, l * (l + 1) * analysis.training_set[n] / (2 * np.pi))

    plt.plot(l,
             l * (l + 1) * observed_Pl / (2 * np.pi),
             linestyle="--",
             label="Observation")

    plt.xlabel(r"$l$")
    plt.ylabel(r"$l(l+1)P_l/2\pi$")
    plt.yscale("log")

    plt.legend(loc="upper left")

    plt.savefig("16_power_spectra.png")
    plt.clf()

    #Train the interpolators
    analysis.train(use_parameters=range(3))
    assert hasattr(analysis, "_interpolator")
    assert hasattr(analysis, "_num_bins")

    #Emulator portability test with pickle/unpickle
    analysis.save("analysis.p")
    emulator = LikelihoodAnalysis.load("analysis.p")

    #Predict the power spectrum at the remaining point
    predicted_Pl = emulator.predict(testing_model.squeeze())

    #Plot it against the measured one
    fig, ax = plt.subplots(2, 1, figsize=(16, 8))

    #Measured
    ax[0].plot(l, l * (l + 1) * testing_Pl / (2 * np.pi), label="measured")

    #Predicted
    ax[0].plot(l,
               l * (l + 1) * predicted_Pl / (2 * np.pi),
               label="interpolated")

    #Fractional difference
    ax[1].plot(l, (predicted_Pl - testing_Pl) / testing_Pl)

    ax[1].set_xlabel(r"$l$")
    ax[0].set_ylabel(r"$l(l+1)P_l/2\pi$")
    ax[1].set_ylabel(r"$P_l^I-P_l^M/P_l^M$")

    ax[0].set_yscale("log")
    ax[0].legend(loc="upper left")

    plt.savefig("power_interpolator_test.png")
    plt.clf()

    #Give it a shot with two points in parameter space to test vectorization
    two_parameter_points = np.array(
        (training_models[0].squeeze(), testing_model.squeeze()))
    two_predicted_Pl = emulator.predict(two_parameter_points)

    fig, ax = plt.subplots(2, 1, figsize=(16, 8))

    #Predicted
    ax[0].plot(l,
               l * (l + 1) * two_predicted_Pl[0] / (2 * np.pi),
               color="red",
               linestyle="--")
    ax[0].plot(l,
               l * (l + 1) * two_predicted_Pl[1] / (2 * np.pi),
               color="green",
               linestyle="--")

    #Measured
    ax[0].plot(l,
               l * (l + 1) * emulator.training_set[0] / (2 * np.pi),
               color="red",
               linestyle="-")
    ax[0].plot(l,
               l * (l + 1) * testing_Pl / (2 * np.pi),
               color="green",
               linestyle="-")

    #Fractional difference
    ax[1].plot(l, (two_predicted_Pl[0] - emulator.training_set[0]) /
               emulator.training_set[0],
               color="red")
    ax[1].plot(l, (two_predicted_Pl[1] - testing_Pl) / testing_Pl,
               color="green")

    ax[1].set_xlabel(r"$l$")
    ax[0].set_ylabel(r"$l(l+1)P_l/2\pi$")
    ax[1].set_ylabel(r"$P_l^I-P_l^M/P_l^M$")

    ax[0].set_yscale("log")

    plt.savefig("power_interpolator_test_2.png")
    plt.clf()

    #Generate a fudge power spectrum covariance matrix
    covariance = np.diag(testing_Pl**2 / (0.5 + l))

    #Generate a fudge observation by wiggling the testing power spectrum
    observation = testing_Pl + np.random.uniform(low=-testing_Pl * 0.1,
                                                 high=testing_Pl * 0.1)

    #Choose a bunch of points in parameter space
    points = emulator.parameter_set[:, :-1]

    #Compute the chi2
    chi2_values_1 = emulator.chi2(points, observation, covariance)
    chi2_values_2 = emulator.chi2(points,
                                  observation,
                                  covariance,
                                  split_chunks=4)

    assert chi2_values_1.shape == chi2_values_2.shape

    #Compute the individual contributions
    chi2_contributions = emulator.chi2Contributions(points[0], observation,
                                                    covariance)

    #Plot
    plt.imshow(chi2_contributions, interpolation="nearest")
    plt.colorbar()
    plt.xlabel(r"$j$")
    plt.ylabel(r"$i$")
    plt.savefig("chi2_contributions.png")
    plt.clf()

    return chi2_values_1, chi2_values_2
Пример #25
0
	for subfield in subfields:

		fig_power,ax_power = plt.subplots()
		fig_peaks,ax_peaks = plt.subplots()
		fig_minkowski,ax_minkowski = plt.subplots(1,3,figsize=(24,8))

		#Plot for the sumulations 
		for model in training_models + [observed_model]:

			m = Measurement(model=model,options=options,subfield=subfield,smoothing_scale=smoothing_scale,measurer=None)
			m.get_all_map_names()

			#Load the features and plot

			#Power spectrum
			ensemble_power = Ensemble.fromfilelist([os.path.join(m.full_save_path,"power_spectrum.npy")])
			ensemble_power.load(from_old=True)
			P = ensemble_power.mean()

			if type(model) == CFHTLens:
				ax_power.plot(l,l*(l+1)*P/(2*np.pi),linestyle="--",color="black")		
			elif type(model) == CFHTemu1:
				ax_power.plot(l,l*(l+1)*P/(2*np.pi))

			#Peaks
			ensemble_peaks = Ensemble.fromfilelist([os.path.join(m.full_save_path,"peaks.npy")])
			ensemble_peaks.load(from_old=True)
			pk = ensemble_peaks.mean()
			
			if type(model) == CFHTLens:
				ax_peaks.plot(v_pk,pk,linestyle="--",color="black")
Пример #26
0
    #Create smoothing scale index for the histogram
    idx = Indexer.stack([PDF(bin_edges) for scale in smoothing_scales])

    #Create IGS1 simulation set object to look for the right simulations
    simulation_set = IGS1(root_path=root_path)

    #Look at a sample map
    sample_map = ConvergenceMap.load(
        simulation_set.getNames(z=1.0, realizations=[1])[0])

    #Initialize Gaussian shape noise generator
    generator = GaussianNoiseGenerator.forMap(sample_map)

    #Build Ensemble instance with the maps to analyze
    map_ensemble = Ensemble.fromfilelist(range(1, num_realizations + 1))

    #Measure the histograms and load the data in the ensemble
    map_ensemble.load(callback_loader=compute_histograms,
                      pool=pool,
                      simulation_set=simulation_set,
                      smoothing_scales=smoothing_scales,
                      index=idx,
                      generator=generator,
                      bin_edges=bin_edges)

    if pool is not None:
        pool.close()

    ##########################################################################################################################################
    ###############################Ensemble data available at this point for covariance, PCA, etc...##########################################
Пример #27
0
def pbBias(cmd_args,feature_name="convergence_power_s0_nb100",title="Power spectrum",kappa_models=("Born",),callback=None,variation_idx=(0,),bootstrap_size=1000,resample=1000,return_results=False,fontsize=22):
	
	#Initialize plot
	fig,ax = plt.subplots(len(variation_idx),3,figsize=(24,8*len(variation_idx)))
	ax = np.atleast_2d(ax)

	##################
	#Load in the data#
	##################

	#Observation
	bootstrap_mean = lambda e: e.values.mean(0)
	feature_ray = Ensemble.read(os.path.join(fiducial["c0"].getMapSet("kappa").home,feature_name+".npy"),callback_loader=callback).bootstrap(bootstrap_mean,bootstrap_size=bootstrap_size,resample=resample,seed=0)

	#Containers for cosmological model
	modelFeatures = dict()
	for mf in kappa_models:
		modelFeatures[mf] = dict()

	parameters = dict()

	for model in models:
		parameters[model.cosmo_id] = np.array([model.cosmology.Om0,model.cosmology.w0,model.cosmology.sigma8])
		for mf in kappa_models:

			try:
				modelFeatures[mf][model.cosmo_id] = Ensemble.read(os.path.join(model["c0"].getMapSet("kappa"+mf).home,feature_name+".npy"),callback_loader=callback)
			except IOError:
				pass

	#Fit each model
	for mf in kappa_models:

		#Select correct 
		features = modelFeatures[mf]

		###############################
		#Compute the covariance matrix#
		###############################

		features_covariance = features[fiducial.cosmo_id].cov()

		################################################
		#Load in the feature to fit, bootstrap the mean#
		################################################
	
		feature_born = features[fiducial.cosmo_id].bootstrap(bootstrap_mean,bootstrap_size=bootstrap_size,resample=resample,seed=0)

		for nv,v in enumerate(variation_idx):

			###############################
			#Initialize the FisherAnalysis#
			###############################

			ftr = np.array([features[m.cosmo_id].values.mean(0) for m in [fiducial] + variations[v]])
			par = np.array([parameters[m.cosmo_id] for m in [fiducial] + variations[v]])
			fisher = FisherAnalysis.from_features(ftr,par,parameter_index=["Om","w0","si8"])

			#############
			####Fit######
			#############

			fitted_parameters_born = fisher.fit(feature_born,features_covariance)
			fitted_parameters_ray = fisher.fit(feature_ray,features_covariance)

			if return_results:
				assert len(kappa_models)==1
				assert len(variation_idx)==1

				return fitted_parameters_born,fitted_parameters_ray

			##########
			#Plotting#
			##########

			for n,p in enumerate(fisher.parameter_names):
				fitted_parameters_born[p].plot.hist(bins=50,ax=ax[nv,n],edgecolor="none",label=r"${\rm Control}$")
				fitted_parameters_ray[p].plot.hist(bins=50,ax=ax[nv,n],edgecolor="none",label=r"${\rm Observation}$")
				
				ax[nv,n].set_xlabel(plab[p],fontsize=fontsize)
				ax[nv,n].set_title(title)
				ax[nv,n].legend(loc="upper right",mode="expand",ncol=2,prop={"size":20})

	#Labels
	for a in ax.flatten():
		plt.setp(a.get_xticklabels(),rotation=30)
	
	#Save
	fig.tight_layout()
	fig.savefig("{0}/bornBias_{1}.{0}".format(cmd_args.type,feature_name))
Пример #28
0
	bin_midpoints = 0.5*(bin_edges[1:] + bin_edges[:-1])
	
	#Create smoothing scale index for the histogram
	idx = Indexer.stack([PDF(bin_edges) for scale in smoothing_scales])
	
	#Create IGS1 simulation set object to look for the right simulations
	simulation_set = IGS1(root_path=root_path)
	
	#Look at a sample map
	sample_map = ConvergenceMap.load(simulation_set.getNames(z=1.0,realizations=[1])[0])
	
	#Initialize Gaussian shape noise generator
	generator = GaussianNoiseGenerator.forMap(sample_map)
	
	#Build Ensemble instance with the maps to analyze
	map_ensemble = Ensemble.fromfilelist(range(1,num_realizations+1))
	
	#Measure the histograms and load the data in the ensemble
	map_ensemble.load(callback_loader=compute_histograms,pool=pool,simulation_set=simulation_set,smoothing_scales=smoothing_scales,index=idx,generator=generator,bin_edges=bin_edges)
	
	if pool is not None:
		pool.close()

	##########################################################################################################################################
	###############################Ensemble data available at this point for covariance, PCA, etc...##########################################
	##########################################################################################################################################
	
	#Plot results to check
	fig,ax = plt.subplots(len(smoothing_scales),1)
	for i in range(len(smoothing_scales)):
		
Пример #29
0
	pool = None

if (pool is not None) and not(pool.is_master()):

	pool.wait()
	sys.exit(0)



map_mock_ids = range(int(sys.argv[1]))

igs1_set = IGS1(root_path="/Users/andreapetri/Documents/Columbia/spurious_shear/convergence_maps")
map_igs1_ids = igs1_set.getNames(z=1.0,realizations=range(1,int(sys.argv[1])+1))

gen = GaussianNoiseGenerator(shape=(2048,2048),side_angle=3.41*deg,label="convergence") 
power_func = np.loadtxt("Data/ee4e-7.txt",unpack=True)

ens_mock = Ensemble.fromfilelist(map_mock_ids)
ens_igs1 = Ensemble.fromfilelist(map_igs1_ids)

ens_mock.load(callback_loader=generate_and_measure,pool=pool,generator=gen,power_func=power_func)
ens_igs1.load(callback_loader=measure_from_IGS1,pool=pool)

if pool is not None:
	pool.close()

np.savetxt("moments_mock.txt",np.array([ens_mock.mean(),np.sqrt(ens_mock.covariance().diagonal())]))
np.savetxt("moments_igs1.txt",np.array([ens_igs1.mean(),np.sqrt(ens_igs1.covariance().diagonal())]))

logging.info("Done!")
Пример #30
0
	pool = None

#The only parallelized part is the loading of the ensemble (that's the computationally expensive part)

if (pool is not None) and not(pool.is_master()):

	pool.wait()
	sys.exit(0)

map_list = ["Data/conv1.fit","Data/conv2.fit","Data/conv3.fit","Data/conv4.fit"]
l_edges = np.arange(200.0,50000.0,200.0)
thresholds_pk = np.arange(-1.0,5.0,0.2)

l = 0.5*(l_edges[:-1] + l_edges[1:])

conv_ensemble = Ensemble.fromfilelist(map_list)
conv_ensemble.load(callback_loader=default_callback_loader,pool=pool,l_edges=l_edges)

if pool is not None:
	pool.close()

def test_shape():

	assert conv_ensemble.num_realizations==len(map_list)
	assert conv_ensemble.data.shape==(len(map_list),len(l_edges)-1)

def test_power_plot():

	fig,ax = plt.subplots()
	for n in range(conv_ensemble.num_realizations):
		ax.plot(l,l*(l+1)*conv_ensemble[n]/(2.0*np.pi),label="Map {0}".format(n+1),linestyle="--")
Пример #31
0
def test_chi2():

	conv_ensemble1 = Ensemble.fromfilelist(map_list[0:2])
	conv_ensemble1.load(callback_loader=default_callback_loader,pool=None,l_edges=l_edges)

	print("chi2 difference = {0}".format(conv_ensemble.compare(conv_ensemble1)))
Пример #32
0
def test_interpolation():

	root_path = "Data/all"
	analysis = LikelihoodAnalysis()

	#Read in model names
	models = CFHTemu1.getModels()[:17]
	assert len(models) == 17

	#Shuffle the models
	np.random.seed(1)
	np.random.shuffle(models)

	#Divide into training and testing
	training_models = models[:-1]
	testing_model = models[-1]

	#Read multipoles
	ell = np.load(os.path.join(root_path,"ell.npy"))

	#Load in the means of the power spectra of the 17 models, and populate the analysis instance
	for model in training_models:

		ens = Ensemble.fromfilelist([os.path.join(root_path,model._cosmo_id_string,"subfield1","sigma05","power_spectrum.npy")])
		ens.load(from_old=True)

		analysis.add_model(parameters=model.squeeze(with_ns=True),feature=ens.mean())

	#Add the multipoles to the analysis
	analysis.add_feature_label(ell)
	l = analysis.feature_label

	ens = Ensemble.fromfilelist([os.path.join(root_path,testing_model._cosmo_id_string,"subfield1","sigma05","power_spectrum.npy")])
	ens.load(from_old=True)
	testing_Pl = ens.mean()

	#Load in also the observed power spectrum
	ens = Ensemble.fromfilelist([os.path.join(root_path,"observations","subfield1","sigma05","power_spectrum.npy")])
	ens.load(from_old=True)
	observed_Pl = ens.mean() 

	#Output the analysis stats
	np.savetxt("16_parameter_points.txt",analysis.parameter_set)

	for n in range(len(training_models)):

		plt.plot(l,l*(l+1)*analysis.training_set[n]/(2*np.pi))

	plt.plot(l,l*(l+1)*observed_Pl/(2*np.pi),linestyle="--",label="Observation")	

	plt.xlabel(r"$l$")
	plt.ylabel(r"$l(l+1)P_l/2\pi$")
	plt.yscale("log")

	plt.legend(loc="upper left")

	plt.savefig("16_power_spectra.png")
	plt.clf()

	#Train the interpolators
	analysis.train(use_parameters=range(3))
	assert hasattr(analysis,"_interpolator")
	assert hasattr(analysis,"_num_bins")

	#Emulator portability test with pickle/unpickle
	analysis.save("analysis.p")
	emulator = LikelihoodAnalysis.load("analysis.p")

	#Predict the power spectrum at the remaining point
	predicted_Pl = emulator.predict(testing_model.squeeze())

	#Plot it against the measured one
	fig,ax = plt.subplots(2,1,figsize=(16,8))

	#Measured
	ax[0].plot(l,l*(l+1)*testing_Pl/(2*np.pi),label="measured")

	#Predicted
	ax[0].plot(l,l*(l+1)*predicted_Pl/(2*np.pi),label="interpolated")
	
	#Fractional difference
	ax[1].plot(l,(predicted_Pl - testing_Pl)/testing_Pl)

	ax[1].set_xlabel(r"$l$")
	ax[0].set_ylabel(r"$l(l+1)P_l/2\pi$")
	ax[1].set_ylabel(r"$P_l^I-P_l^M/P_l^M$")
	
	ax[0].set_yscale("log")
	ax[0].legend(loc="upper left")

	plt.savefig("power_interpolator_test.png")
	plt.clf()

	#Give it a shot with two points in parameter space to test vectorization
	two_parameter_points = np.array((training_models[0].squeeze(),testing_model.squeeze()))
	two_predicted_Pl = emulator.predict(two_parameter_points)

	fig,ax = plt.subplots(2,1,figsize=(16,8))

	#Predicted
	ax[0].plot(l,l*(l+1)*two_predicted_Pl[0]/(2*np.pi),color="red",linestyle="--")
	ax[0].plot(l,l*(l+1)*two_predicted_Pl[1]/(2*np.pi),color="green",linestyle="--")

	#Measured
	ax[0].plot(l,l*(l+1)*emulator.training_set[0]/(2*np.pi),color="red",linestyle="-")
	ax[0].plot(l,l*(l+1)*testing_Pl/(2*np.pi),color="green",linestyle="-")

	#Fractional difference
	ax[1].plot(l,(two_predicted_Pl[0] - emulator.training_set[0])/emulator.training_set[0],color="red")
	ax[1].plot(l,(two_predicted_Pl[1] - testing_Pl)/testing_Pl,color="green")

	ax[1].set_xlabel(r"$l$")
	ax[0].set_ylabel(r"$l(l+1)P_l/2\pi$")
	ax[1].set_ylabel(r"$P_l^I-P_l^M/P_l^M$")
	
	ax[0].set_yscale("log")

	plt.savefig("power_interpolator_test_2.png")
	plt.clf()

	#Generate a fudge power spectrum covariance matrix
	covariance = np.diag(testing_Pl**2/(0.5 + l))

	#Generate a fudge observation by wiggling the testing power spectrum
	observation = testing_Pl + np.random.uniform(low=-testing_Pl*0.1,high=testing_Pl*0.1)

	#Choose a bunch of points in parameter space
	points = emulator.parameter_set[:,:-1]

	#Compute the chi2
	chi2_values_1 = emulator.chi2(points,observation,covariance)
	chi2_values_2 = emulator.chi2(points,observation,covariance,split_chunks=4)

	assert chi2_values_1.shape == chi2_values_2.shape

	#Compute the individual contributions
	chi2_contributions = emulator.chi2Contributions(points[0],observation,covariance)

	#Plot
	plt.imshow(chi2_contributions,interpolation="nearest")
	plt.colorbar()
	plt.xlabel(r"$j$")
	plt.ylabel(r"$i$")
	plt.savefig("chi2_contributions.png")
	plt.clf()

	return chi2_values_1,chi2_values_2
Пример #33
0
	def load_features(self,model,save_new=False):

		#First create an empty ensemble
		ensemble_all_subfields = Ensemble()

		#Then cycle through all the subfields and gather the features for each one
		for subfield in self.subfields:
		
			#Dictionary that holds all the measurements
			m = dict()

			for smoothing_scale in self.smoothing_scales:
				m[smoothing_scale] = Measurement(model=model,options=self.options,subfield=subfield,smoothing_scale=smoothing_scale,measurer=None,mean_subtract=self.cmd_args.mean_subtract)
				m[smoothing_scale].get_all_map_names()

			#Construct one ensemble for each feature (with included smoothing scales) and load in the data
			ensemble_subfield = list()
			
			#Prevent randomness in dictionary keys
			features_to_measure = self.features_to_measure.keys()
			features_to_measure.sort()

			for feature_type in features_to_measure:
			
				for smoothing_scale in self.features_to_measure[feature_type]:
					
					#Construct the subfield/smoothing scale/feature specific ensemble
					ens_filename = os.path.join(m[smoothing_scale].full_save_path,npy_filename(feature_type))
					logging.info("Reading ensemble from {0}".format(ens_filename))
					ens = Ensemble.fromfilelist([ens_filename])
					ens.load(from_old=True)

					#Check if we want to cut out some of the peaks
					if self.cmd_args.cut_convergence and feature_type=="peaks":
						new_thresholds = ens.cut(self.kappa_min,self.kappa_max,feature_label=self.kappa_peaks)
						logging.log(DEBUG_PLUS,"Performed cut on the peaks convergence, new limits are {0},{1}".format(new_thresholds[0],new_thresholds[-1]))
						if save_new:
							logging.info("Saving new kappa values to {0}...".format(os.path.join(self.save_path,"th_new_peaks.npy")))
							np.save(os.path.join(self.save_path,"th_new_peaks.npy"),new_thresholds)

					#Check the masked fraction of the field of view
					masked_fraction = self.masked_fraction[smoothing_scale][subfield]

					###########################################################################################################################################################################################################
					#Scale to the non masked area: if we treat each subfield independently (i.e. group_subfields is False) then we need to scale each subfield to the same area when considering the power spectrum and peaks##
					#if on the other hand we group subfields together, then the power spectrum and peaks are simply added between subfields, but the MFs and the moments need to be scaled#####################################
					###########################################################################################################################################################################################################

					if (self.cmd_args.mask_scale) and not(self.cmd_args.group_subfields):
					
						if feature_type=="power_spectrum":
							logging.log(DEBUG_PLUS,"Scaling power spectrum of subfield {0}, masked fraction {1}, multiplying by {2}".format(subfield,masked_fraction,1.0/(1.0 - masked_fraction)**2))
							ens.scale(1.0/(1.0 - masked_fraction)**2)
						elif feature_type=="peaks":
							logging.log(DEBUG_PLUS,"Scaling peak counts of subfield {0}, masked fraction {1}, multiplying by {2}".format(subfield,masked_fraction,1.0/(1.0 - masked_fraction)))
							ens.scale(1.0/(1.0 - masked_fraction))

					elif (self.cmd_args.mask_scale) and (self.cmd_args.group_subfields):

						if "minkowski" in feature_type or "moments" in feature_type:
							logging.log(DEBUG_PLUS,"Scaling {0} of subfield {1}, masked fraction {2}, multiplying by {3}".format(feature_type,subfield,masked_fraction,(1.0 - masked_fraction)/self.total_non_masked_fraction[smoothing_scale]))
							ens.scale((1.0 - masked_fraction)/self.total_non_masked_fraction[smoothing_scale])

					#Regular expressions to parse the feature string
					num = re.match(r"minkowski_([0-2]+)",feature_type)
					momParse = re.match(r"moments(_[qsk][1-4]+)?(_[qsk][1-4]+)?(_[qsk][1-4]+)?",feature_type)
					assert (num is None) or (momParse is None)

					if num is not None:

						###############################################################################
						##MFs only: check if we want to discard some of the Minkowski functionals######
						###############################################################################
						
						mink_to_measure = [ int(n_mf) for n_mf in list(num.group(1)) ]
						ens_split = ens.split(self.mink_idx)

						#Differentiate Minkowski 0 to find the PDF?
						if self.cmd_args.differentiate:
							logging.log(DEBUG_PLUS,"Differentiating Minkowski 0 to get the PDF")
							ens_split[0] = ens_split[0].differentiate(step=self.kappa_minkowski[0]-self.kappa_minkowski[1])

						#Perform the convergence cut if option is enabled
						if self.cmd_args.cut_convergence:
							new_thresholds = [ ens_split[n_mf].cut(self.kappa_min,self.kappa_max,feature_label=self.kappa_minkowski) for n_mf in mink_to_measure ]
							logging.log(DEBUG_PLUS,"Performed cut on the minkowski convergence, new limits are {0},{1}".format(new_thresholds[0][0],new_thresholds[0][-1]))
							if save_new:
								logging.info("Saving new kappa values to {0}...".format(os.path.join(self.save_path,"th_new_minkowski.npy")))
								np.save(os.path.join(self.save_path,"th_new_minkowski.npy"),new_thresholds[0])
					
						[ ensemble_subfield.append(ens_split[n_mf]) for n_mf in mink_to_measure ]

					elif momParse is not None:

						###############################################################################
						##Moments only: check if we want to keep only a subset of the moments##########
						###############################################################################

						momGroups = momParse.groups()
						mom_indices = list()

						#Check, one by one, the moment indices
						for gr in momGroups:
							
							if gr is not None:
								
								moment_type = gr[1]
								moment_numbers = [ int(n_mom)-1 for n_mom in gr[2:] ]

								#Compute offset
								if moment_type=="q":
									mom_offset=0
								elif moment_type=="s":
									mom_offset=2
								elif moment_type=="k":
									mom_offset=5
								else:
									raise ValueError("Only quadratic, cubic, quartic moments implemented!")

								#Append indices to list
								for mom_num in moment_numbers:
									mom_indices.append(mom_offset+mom_num)

						#Slice the ensemble accordingly
						if len(mom_indices)>0:
							logging.info("Measuring moments {0}".format(mom_indices))
							ens.cut(mom_indices)

						#Append to subfield
						ensemble_subfield.append(ens)
				
					else:
					
						ensemble_subfield.append(ens)
						if self.cmd_args.cut_convergence:
							logging.log(DEBUG_PLUS,"Convergence cut on MFs not performed, select minkowski_012 instead of minkowski_all")

					#############################################################################################


			#Add the features to the cumulative subfield ensemble
			ensemble_all_subfields += reduce(mul,ensemble_subfield)

		#If option is specified, group all the subfields together, for each realization
		if self.cmd_args.group_subfields:
			logging.log(DEBUG_PLUS,"Taking means over the {0} subfields...".format(len(self.subfields)))
			ensemble_all_subfields.group(group_size=len(self.subfields),kind="sparse")

		#Return the created ensemble
		return ensemble_all_subfields
Пример #34
0
#The only parallelized part is the loading of the ensemble (that's the computationally expensive part)

if (pool is not None) and not (pool.is_master()):

    pool.wait()
    sys.exit(0)

map_list = [
    "Data/conv1.fit", "Data/conv2.fit", "Data/conv3.fit", "Data/conv4.fit"
]
l_edges = np.arange(200.0, 50000.0, 200.0)
thresholds_pk = np.arange(-1.0, 5.0, 0.2)

l = 0.5 * (l_edges[:-1] + l_edges[1:])

conv_ensemble = Ensemble.fromfilelist(map_list)
conv_ensemble.load(callback_loader=default_callback_loader,
                   pool=pool,
                   l_edges=l_edges)

if pool is not None:
    pool.close()


def test_shape():

    assert conv_ensemble.num_realizations == len(map_list)
    assert conv_ensemble.data.shape == (len(map_list), len(l_edges) - 1)


def test_power_plot():