Пример #1
0
    def test_derivatives(self):
        """

        :return:
        """
        triplechameleon = TripleChameleon()
        chameleon = Chameleon()

        x = np.linspace(0.1, 10, 10)
        phi_G, q = 0.3, 0.8
        ratio12 = 2.
        ratio13 = 3
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_light = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1,
                        'e21': e2,
                        'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2,
                        'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2
                        }

        amp1 = 1. / (1. + 1. / ratio12 + 1. / ratio13)
        amp2 = amp1 / ratio12
        amp3 = amp1 / ratio13
        kwargs_1 = {'alpha_1': amp1, 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2}
        kwargs_2 = {'alpha_1': amp2, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2}
        kwargs_3 = {'alpha_1': amp3, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2}
        f_x, f_y = triplechameleon.derivatives(x=x, y=1., **kwargs_light)
        f_x1, f_y1 = chameleon.derivatives(x=x, y=1., **kwargs_1)
        f_x2, f_y2 = chameleon.derivatives(x=x, y=1., **kwargs_2)
        f_x3, f_y3 = chameleon.derivatives(x=x, y=1., **kwargs_3)
        npt.assert_almost_equal(f_x, f_x1 + f_x2 + f_x3, decimal=8)
        npt.assert_almost_equal(f_y, f_y1 + f_y2 + f_y3, decimal=8)
Пример #2
0
    def test_hessian(self):
        """

        :return:
        """
        doublechameleon = DoubleChameleon()
        chameleon = Chameleon()

        x = np.linspace(0.1, 10, 10)
        phi_G, q = 0.3, 0.8
        theta_E = 1.
        ratio = 2.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_lens = {'alpha_1': theta_E, 'ratio': ratio, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2}
        kwargs_light = {'amp': theta_E, 'ratio': ratio, 'w_c1': .5, 'w_t1': 1., 'e11': e1, 'e21': e2, 'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2}

        kwargs_1 = {'alpha_1': theta_E / (1 + 1./ratio), 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2}
        kwargs_2 = {'alpha_1': theta_E / (1 + ratio), 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2}
        f_xx, f_yy, f_xy = doublechameleon.hessian(x=x, y=1., **kwargs_lens)
        f_xx1, f_yy1, f_xy1 = chameleon.hessian(x=x, y=1., **kwargs_1)
        f_xx2, f_yy2, f_xy2 = chameleon.hessian(x=x, y=1., **kwargs_2)
        npt.assert_almost_equal(f_xx, f_xx1 + f_xx2, decimal=8)
        npt.assert_almost_equal(f_yy, f_yy1 + f_yy2, decimal=8)
        npt.assert_almost_equal(f_xy, f_xy1 + f_xy2, decimal=8)
        light = DoubleChameleonLight()
        f_xx, f_yy, f_xy = doublechameleon.hessian(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_lens)
        kappa = 1./2 * (f_xx + f_yy)
        kappa_norm = kappa / np.mean(kappa)
        flux = light.function(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_light)
        flux_norm = flux / np.mean(flux)
        npt.assert_almost_equal(kappa_norm, flux_norm, decimal=5)
Пример #3
0
    def test_hessian(self):
        """

        :return:
        """
        triplechameleon = TripleChameleon()
        chameleon = Chameleon()

        x = np.linspace(0.1, 10, 10)
        phi_G, q = 0.3, 0.8
        ratio12 = 2.
        ratio13 = 3
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_lens = {'alpha_1': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1,
                        'e21': e2,
                        'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2,
                        'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2
                        }

        kwargs_light = {'amp': 1., 'ratio12': ratio12, 'ratio13': ratio13, 'w_c1': .5, 'w_t1': 1., 'e11': e1,
                       'e21': e2,
                       'w_c2': .1, 'w_t2': .5, 'e12': e1, 'e22': e2,
                       'w_c3': .1, 'w_t3': .5, 'e13': e1, 'e23': e2
                       }

        amp1 = 1. / (1. + 1. / ratio12 + 1. / ratio13)
        amp2 = amp1 / ratio12
        amp3 = amp1 / ratio13
        kwargs_1 = {'alpha_1': amp1, 'w_c': .5, 'w_t': 1., 'e1': e1, 'e2': e2}
        kwargs_2 = {'alpha_1': amp2, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2}
        kwargs_3 = {'alpha_1': amp3, 'w_c': .1, 'w_t': .5, 'e1': e1, 'e2': e2}


        f_xx, f_yy, f_xy = triplechameleon.hessian(x=x, y=1., **kwargs_lens)
        f_xx1, f_yy1, f_xy1 = chameleon.hessian(x=x, y=1., **kwargs_1)
        f_xx2, f_yy2, f_xy2 = chameleon.hessian(x=x, y=1., **kwargs_2)
        f_xx3, f_yy3, f_xy3 = chameleon.hessian(x=x, y=1., **kwargs_3)
        npt.assert_almost_equal(f_xx, f_xx1 + f_xx2 + f_xx3, decimal=8)
        npt.assert_almost_equal(f_yy, f_yy1 + f_yy2 + f_yy3, decimal=8)
        npt.assert_almost_equal(f_xy, f_xy1 + f_xy2 + f_xy3, decimal=8)
        light = TripleChameleonLight()
        f_xx, f_yy, f_xy = triplechameleon.hessian(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_lens)
        kappa = 1./2 * (f_xx + f_yy)
        kappa_norm = kappa / np.mean(kappa)
        flux = light.function(x=np.linspace(0, 1, 10), y=np.zeros(10), **kwargs_light)
        flux_norm = flux / np.mean(flux)
        npt.assert_almost_equal(kappa_norm, flux_norm, decimal=5)
Пример #4
0
    def test_derivatives(self):
        """

        :return:
        """
        doublechameleon = DoubleChameleon()
        chameleon = Chameleon()

        x = np.linspace(0.1, 10, 10)
        phi_G, q = 0.3, 0.8
        theta_E = 1.
        ratio = 2.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_light = {
            'theta_E': 1.,
            'ratio': 2,
            'w_c1': .5,
            'w_t1': 1.,
            'e11': e1,
            'e21': e2,
            'w_c2': .1,
            'w_t2': .5,
            'e12': e1,
            'e22': e2
        }

        kwargs_1 = {
            'theta_E': theta_E / (1 + 1. / ratio),
            'w_c': .5,
            'w_t': 1.,
            'e1': e1,
            'e2': e2
        }
        kwargs_2 = {
            'theta_E': theta_E / (1 + ratio),
            'w_c': .1,
            'w_t': .5,
            'e1': e1,
            'e2': e2
        }
        f_x, f_y = doublechameleon.derivatives(x=x, y=1., **kwargs_light)
        f_x1, f_y1 = chameleon.derivatives(x=x, y=1., **kwargs_1)
        f_x2, f_y2 = chameleon.derivatives(x=x, y=1., **kwargs_2)
        npt.assert_almost_equal(f_x, f_x1 + f_x2, decimal=8)
        npt.assert_almost_equal(f_y, f_y1 + f_y2, decimal=8)
Пример #5
0
    def test_function(self):
        """

        :return:
        """
        doublechameleon = DoubleChameleon()
        chameleon = Chameleon()

        x = np.linspace(0.1, 10, 10)
        phi_G, q = 0.3, 0.8
        theta_E = 1.
        ratio = 2.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_light = {
            'alpha_1': 1.,
            'ratio': 2,
            'w_c1': .5,
            'w_t1': 1.,
            'e11': e1,
            'e21': e2,
            'w_c2': .1,
            'w_t2': .5,
            'e12': e1,
            'e22': e2
        }

        kwargs_1 = {
            'alpha_1': theta_E / (1 + 1. / ratio),
            'w_c': .5,
            'w_t': 1.,
            'e1': e1,
            'e2': e2
        }
        kwargs_2 = {
            'alpha_1': theta_E / (1 + ratio),
            'w_c': .1,
            'w_t': .5,
            'e1': e1,
            'e2': e2
        }
        flux = doublechameleon.function(x=x, y=1., **kwargs_light)
        flux1 = chameleon.function(x=x, y=1., **kwargs_1)
        flux2 = chameleon.function(x=x, y=1., **kwargs_2)
        npt.assert_almost_equal(flux, flux1 + flux2, decimal=8)
Пример #6
0
 def setup(self):
     self.chameleon = Chameleon()
     self.nie = NIE()
Пример #7
0
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Пример #8
0
    def __init__(self, lens_model_list, **kwargs):
        """

        :param lens_model_list: list of strings with lens model names
        :param foreground_shear: bool, when True, models a foreground non-linear shear distortion
        """
        self.func_list = []
        self._foreground_shear = False
        for i, lens_type in enumerate(lens_model_list):
            if lens_type == 'SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
            elif lens_type == 'CONVERGENCE':
                from lenstronomy.LensModel.Profiles.mass_sheet import MassSheet
                self.func_list.append(MassSheet())
            elif lens_type == 'FLEXION':
                from lenstronomy.LensModel.Profiles.flexion import Flexion
                self.func_list.append(Flexion())
            elif lens_type == 'POINT_MASS':
                from lenstronomy.LensModel.Profiles.point_mass import PointMass
                self.func_list.append(PointMass())
            elif lens_type == 'SIS':
                from lenstronomy.LensModel.Profiles.sis import SIS
                self.func_list.append(SIS())
            elif lens_type == 'SIS_TRUNCATED':
                from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
                self.func_list.append(SIS_truncate())
            elif lens_type == 'SIE':
                from lenstronomy.LensModel.Profiles.sie import SIE
                self.func_list.append(SIE())
            elif lens_type == 'SPP':
                from lenstronomy.LensModel.Profiles.spp import SPP
                self.func_list.append(SPP())
            elif lens_type == 'NIE':
                from lenstronomy.LensModel.Profiles.nie import NIE
                self.func_list.append(NIE())
            elif lens_type == 'NIE_SIMPLE':
                from lenstronomy.LensModel.Profiles.nie import NIE_simple
                self.func_list.append(NIE_simple())
            elif lens_type == 'CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import Chameleon
                self.func_list.append(Chameleon())
            elif lens_type == 'DOUBLE_CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
                self.func_list.append(DoubleChameleon())
            elif lens_type == 'SPEP':
                from lenstronomy.LensModel.Profiles.spep import SPEP
                self.func_list.append(SPEP())
            elif lens_type == 'SPEMD':
                from lenstronomy.LensModel.Profiles.spemd import SPEMD
                self.func_list.append(SPEMD())
            elif lens_type == 'SPEMD_SMOOTH':
                from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
                self.func_list.append(SPEMD_SMOOTH())
            elif lens_type == 'NFW':
                from lenstronomy.LensModel.Profiles.nfw import NFW
                self.func_list.append(NFW(**kwargs))
            elif lens_type == 'NFW_ELLIPSE':
                from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
                self.func_list.append(
                    NFW_ELLIPSE(interpol=False,
                                num_interp_X=1000,
                                max_interp_X=100))
            elif lens_type == 'TNFW':
                from lenstronomy.LensModel.Profiles.tnfw import TNFW
                self.func_list.append(TNFW())
            elif lens_type == 'SERSIC':
                from lenstronomy.LensModel.Profiles.sersic import Sersic
                self.func_list.append(Sersic())
            elif lens_type == 'SERSIC_ELLIPSE':
                from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
                self.func_list.append(SersicEllipse())
            elif lens_type == 'PJAFFE':
                from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
                self.func_list.append(PJaffe())
            elif lens_type == 'PJAFFE_ELLIPSE':
                from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
                self.func_list.append(PJaffe_Ellipse())
            elif lens_type == 'HERNQUIST':
                from lenstronomy.LensModel.Profiles.hernquist import Hernquist
                self.func_list.append(Hernquist())
            elif lens_type == 'HERNQUIST_ELLIPSE':
                from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
                self.func_list.append(Hernquist_Ellipse())
            elif lens_type == 'GAUSSIAN':
                from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
                self.func_list.append(Gaussian())
            elif lens_type == 'GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
                self.func_list.append(GaussianKappa())
            elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
                self.func_list.append(GaussianKappaEllipse())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
                self.func_list.append(MultiGaussianKappa())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
                self.func_list.append(MultiGaussianKappaEllipse())
            elif lens_type == 'INTERPOL':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func
                self.func_list.append(
                    Interpol_func(grid=False, min_grid_number=100))
            elif lens_type == 'INTERPOL_SCALED':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func_scaled
                self.func_list.append(
                    Interpol_func_scaled(grid=False, min_grid_number=100))
            elif lens_type == 'SHAPELETS_POLAR':
                from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
                self.func_list.append(PolarShapelets())
            elif lens_type == 'SHAPELETS_CART':
                from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
                self.func_list.append(CartShapelets())
            elif lens_type == 'DIPOLE':
                from lenstronomy.LensModel.Profiles.dipole import Dipole
                self.func_list.append(Dipole())
            elif lens_type == 'FOREGROUND_SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
                self._foreground_shear = True
                self._foreground_shear_idex = i
            else:
                raise ValueError('%s is not a valid lens model' % lens_type)

        self._model_list = lens_model_list
Пример #9
0
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE':
            from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
            return GaussianKappaEllipse()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert
            return coreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class[i])
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Пример #10
0
    def _import_class(lens_type,
                      custom_class,
                      kwargs_interp,
                      z_lens=None,
                      z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param kwargs_interp: interpolation keyword arguments specifying the numerics.
         See description in the Interpolate() class. Only applicable for 'INTERPOL' and 'INTERPOL_SCALED' models.
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.constant_shift import Shift
            return Shift()
        elif lens_type == 'NIE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.nie_potential import NIE_POTENTIAL
            return NIE_POTENTIAL()
        elif lens_type == 'CONST_MAG':
            from lenstronomy.LensModel.Profiles.const_mag import ConstMag
            return ConstMag()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'SHEAR_REDUCED':
            from lenstronomy.LensModel.Profiles.shear import ShearReduced
            return ShearReduced()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'HESSIAN':
            from lenstronomy.LensModel.Profiles.hessian import Hessian
            return Hessian()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'PEMD':
            from lenstronomy.LensModel.Profiles.pemd import PEMD
            return PEMD()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'EPL':
            from lenstronomy.LensModel.Profiles.epl import EPL
            return EPL()
        elif lens_type == 'EPL_NUMBA':
            from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba
            return EPL_numba()
        elif lens_type == 'SPL_CORE':
            from lenstronomy.LensModel.Profiles.splcore import SPLCORE
            return SPLCORE()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'NFW_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse_cse import NFW_ELLIPSE_CSE
            return NFW_ELLIPSE_CSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'TNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.tnfw_ellipse import TNFW_ELLIPSE
            return TNFW_ELLIPSE()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'HERNQUIST_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse_cse import HernquistEllipseCSE
            return HernquistEllipseCSE()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(**kwargs_interp)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled(**kwargs_interp)
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC_CONST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConst
            return CurvedArcConst()
        elif lens_type == 'CURVED_ARC_CONST_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConstMST
            return CurvedArcConstMST()
        elif lens_type == 'CURVED_ARC_SPP':
            from lenstronomy.LensModel.Profiles.curved_arc_spp import CurvedArcSPP
            return CurvedArcSPP()
        elif lens_type == 'CURVED_ARC_SIS_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_sis_mst import CurvedArcSISMST
            return CurvedArcSISMST()
        elif lens_type == 'CURVED_ARC_SPT':
            from lenstronomy.LensModel.Profiles.curved_arc_spt import CurvedArcSPT
            return CurvedArcSPT()
        elif lens_type == 'CURVED_ARC_TAN_DIFF':
            from lenstronomy.LensModel.Profiles.curved_arc_tan_diff import CurvedArcTanDiff
            return CurvedArcTanDiff()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_EXP':
            from lenstronomy.LensModel.Profiles.cored_density_exp import CoredDensityExp
            return CoredDensityExp()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'CORED_DENSITY_EXP_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_EXP')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        elif lens_type == 'MULTIPOLE':
            from lenstronomy.LensModel.Profiles.multipole import Multipole
            return Multipole()
        elif lens_type == 'CSE':
            from lenstronomy.LensModel.Profiles.cored_steep_ellipsoid import CSE
            return CSE()
        elif lens_type == 'ElliSLICE':
            from lenstronomy.LensModel.Profiles.elliptical_density_slice import ElliSLICE
            return ElliSLICE()
        elif lens_type == 'ULDM':
            from lenstronomy.LensModel.Profiles.uldm import Uldm
            return Uldm()
        elif lens_type == 'CORED_DENSITY_ULDM_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_ULDM')
        else:
            raise ValueError(
                '%s is not a valid lens model. Supported are: %s.' %
                (lens_type, _SUPPORTED_MODELS))