Пример #1
0
def lens_model_plot(ax, lensModel, kwargs_lens, numPix=500, deltaPix=0.01, sourcePos_x=0, sourcePos_y=0, point_source=False, with_caustics=False):
    """
    plots a lens model (convergence) and the critical curves and caustics

    :param ax:
    :param kwargs_lens:
    :param numPix:
    :param deltaPix:
    :return:
    """
    from lenstronomy.SimulationAPI.simulations import Simulation
    simAPI = Simulation()
    kwargs_data = simAPI.data_configure(numPix, deltaPix)
    data = Data(kwargs_data)
    _frame_size = numPix * deltaPix
    _coords = data._coords
    x_grid, y_grid = data.coordinates
    lensModelExt = LensModelExtensions(lensModel)

    #ra_crit_list, dec_crit_list, ra_caustic_list, dec_caustic_list = lensModelExt.critical_curve_caustics(
    #    kwargs_lens, compute_window=_frame_size, grid_scale=deltaPix/2.)
    x_grid1d = util.image2array(x_grid)
    y_grid1d = util.image2array(y_grid)
    kappa_result = lensModel.kappa(x_grid1d, y_grid1d, kwargs_lens)
    kappa_result = util.array2image(kappa_result)
    im = ax.matshow(np.log10(kappa_result), origin='lower',
                    extent=[0, _frame_size, 0, _frame_size], cmap='Greys', vmin=-1, vmax=1) #, cmap=self._cmap, vmin=v_min, vmax=v_max)
    if with_caustics is True:
        ra_crit_list, dec_crit_list = lensModelExt.critical_curve_tiling(kwargs_lens, compute_window=_frame_size,
                                                                         start_scale=deltaPix, max_order=10)
        ra_caustic_list, dec_caustic_list = lensModel.ray_shooting(ra_crit_list, dec_crit_list, kwargs_lens)
        plot_line_set(ax, _coords, ra_caustic_list, dec_caustic_list, color='g')
        plot_line_set(ax, _coords, ra_crit_list, dec_crit_list, color='r')
    if point_source:
        from lenstronomy.LensModel.Solver.lens_equation_solver import LensEquationSolver
        solver = LensEquationSolver(lensModel)
        theta_x, theta_y = solver.image_position_from_source(sourcePos_x, sourcePos_y, kwargs_lens)
        mag_images = lensModel.magnification(theta_x, theta_y, kwargs_lens)
        x_image, y_image = _coords.map_coord2pix(theta_x, theta_y)
        abc_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
        for i in range(len(x_image)):
            x_ = (x_image[i] + 0.5) * deltaPix
            y_ = (y_image[i] + 0.5) * deltaPix
            ax.plot(x_, y_, 'dk', markersize=4*(1 + np.log(np.abs(mag_images[i]))), alpha=0.5)
            ax.text(x_, y_, abc_list[i], fontsize=20, color='k')
        x_source, y_source = _coords.map_coord2pix(sourcePos_x, sourcePos_y)
        ax.plot((x_source + 0.5) * deltaPix, (y_source + 0.5) * deltaPix, '*k', markersize=10)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    ax.autoscale(False)
    #image_position_plot(ax, _coords, self._kwargs_else)
    #source_position_plot(ax, self._coords, self._kwargs_source)
    return ax
Пример #2
0
    def test_point_source_rendering(self):
        # initialize data
        from lenstronomy.SimulationAPI.simulations import Simulation
        SimAPI = Simulation()
        numPix = 100
        deltaPix = 0.05
        kwargs_data = SimAPI.data_configure(numPix, deltaPix, exposure_time=1, sigma_bkg=1)
        data_class = Data(kwargs_data)
        kernel = np.zeros((5, 5))
        kernel[2, 2] = 1
        kwargs_psf = {'kernel_point_source': kernel, 'kernel_pixel': kernel, 'psf_type': 'PIXEL'}
        psf_class = PSF(kwargs_psf)
        lens_model_class = LensModel(['SPEP'])
        source_model_class = LightModel([])
        lens_light_model_class = LightModel([])
        kwargs_numerics = {'subgrid_res': 2, 'point_source_subgrid': 1}
        point_source_class = PointSource(point_source_type_list=['LENSED_POSITION'], fixed_magnification_list=[False])
        makeImage = ImageModel(data_class, psf_class, lens_model_class, source_model_class, lens_light_model_class, point_source_class, kwargs_numerics=kwargs_numerics)
        # chose point source positions
        x_pix = np.array([10, 5, 10, 90])
        y_pix = np.array([40, 50, 60, 50])
        ra_pos, dec_pos = makeImage.Data.map_pix2coord(x_pix, y_pix)
        e1, e2 = param_util.phi_q2_ellipticity(0, 0.8)
        kwargs_lens_init = [{'theta_E': 1, 'gamma': 2, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0}]
        kwargs_else = [{'ra_image': ra_pos, 'dec_image': dec_pos, 'point_amp': np.ones_like(ra_pos)}]
        model = makeImage.image(kwargs_lens_init, kwargs_source={}, kwargs_lens_light={}, kwargs_ps=kwargs_else)
        image = makeImage.ImageNumerics.array2image(model)
        for i in range(len(x_pix)):
            npt.assert_almost_equal(image[y_pix[i], x_pix[i]], 1, decimal=2)

        x_pix = np.array([10.5, 5.5, 10.5, 90.5])
        y_pix = np.array([40, 50, 60, 50])
        ra_pos, dec_pos = makeImage.Data.map_pix2coord(x_pix, y_pix)
        phi, q = 0., 0.8
        e1, e2 = param_util.phi_q2_ellipticity(phi, q)
        kwargs_lens_init = [{'theta_E': 1, 'gamma': 2, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0}]
        kwargs_else = [{'ra_image': ra_pos, 'dec_image': dec_pos, 'point_amp': np.ones_like(ra_pos)}]
        model = makeImage.image(kwargs_lens_init, kwargs_source={}, kwargs_lens_light={}, kwargs_ps=kwargs_else)
        image = makeImage.ImageNumerics.array2image(model)
        for i in range(len(x_pix)):
            print(int(y_pix[i]), int(x_pix[i]+0.5))
            npt.assert_almost_equal(image[int(y_pix[i]), int(x_pix[i])], 0.5, decimal=1)
            npt.assert_almost_equal(image[int(y_pix[i]), int(x_pix[i]+0.5)], 0.5, decimal=1)
Пример #3
0
class TestImageModel(object):
    """
    tests the source model routines
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = .05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF
        psf_type = 'PIXEL'  # 'gaussian', 'pixel', 'NONE'

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time, sigma_bkg)
        psf_class = self.SimAPI.psf_configure(psf_type='GAUSSIAN', fwhm=fwhm, kernelsize=31, deltaPix=deltaPix,
                                               truncate=5)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {'e1': 0.01, 'e2': 0.01}  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {'theta_E': 1., 'gamma': 1.8, 'center_x': 0, 'center_y': 0, 'q': 0.8, 'phi_G': 0.2}

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {'I0_sersic': 1., 'R_sersic': 0.1, 'n_sersic': 2, 'center_x': 0, 'center_y': 0}
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {'I0_sersic': 1., 'R_sersic': .6, 'n_sersic': 7, 'center_x': 0, 'center_y': 0,
                                 'phi_G': 0.2, 'q': 0.9}

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [{'ra_source': 0.0, 'dec_source': 0.0,
                           'source_amp': 1.}]  # quasar point source position in the source plane and intrinsic brightness
        point_source_class = PointSource(point_source_type_list=['SOURCE_POSITION'], fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}
        imageModel = ImageModel(data_class, psf_class, lens_model_class, source_model_class, lens_light_model_class,
                                point_source_class, kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens, self.kwargs_source,
                                         self.kwargs_lens_light, self.kwargs_ps)
        data_class.update_data(image_sim)
        kwargs_data = data_class.constructor_kwargs()
        kwargs_psf = psf_class.constructor_kwargs()
        self.solver = LensEquationSolver(lensModel=lens_model_class)
        multi_band_list = [[kwargs_data, kwargs_psf, kwargs_numerics]]
        self.imageModel = Multiband(multi_band_list, lens_model_class, source_model_class, lens_light_model_class, point_source_class)

    def test_source_surface_brightness(self):
        source_model = self.imageModel.source_surface_brightness(self.kwargs_source, self.kwargs_lens, unconvolved=False, de_lensed=False)
        assert len(source_model[0]) == 100
        npt.assert_almost_equal(source_model[0][10, 10], 0.1370014246240874, decimal=8)

        source_model = self.imageModel.source_surface_brightness(self.kwargs_source, self.kwargs_lens, unconvolved=True, de_lensed=False)
        assert len(source_model[0]) == 100
        npt.assert_almost_equal(source_model[0][10, 10], 0.13164547458291054, decimal=8)

    def test_lens_surface_brightness(self):
        lens_flux = self.imageModel.lens_surface_brightness(self.kwargs_lens_light, unconvolved=False)
        npt.assert_almost_equal(lens_flux[0][50, 50], 0.4415194068014886, decimal=8)

        lens_flux = self.imageModel.lens_surface_brightness(self.kwargs_lens_light, unconvolved=True)
        npt.assert_almost_equal(lens_flux[0][50, 50], 4.7310552067454452, decimal=8)

    def test_image_linear_solve(self):
        model, error_map, cov_param, param = self.imageModel.image_linear_solve(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, inv_bool=False)
        chi2_reduced = self.imageModel._imageModel_list[0].reduced_chi2(model[0], error_map[0])
        npt.assert_almost_equal(chi2_reduced, 1, decimal=1)

    def test_image(self):
        model = self.imageModel.image(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, unconvolved=False, source_add=True, lens_light_add=True, point_source_add=True)
        error_map = self.imageModel.error_map(self.kwargs_lens, self.kwargs_ps)
        chi2_reduced = self.imageModel._imageModel_list[0].reduced_chi2(model[0], error_map[0])
        npt.assert_almost_equal(chi2_reduced, 1, decimal=1)

    def test_image_positions(self):
        x_im, y_im = self.imageModel.image_positions(self.kwargs_ps, self.kwargs_lens)
        ra_pos, dec_pos = self.solver.image_position_from_source(sourcePos_x=self.kwargs_ps[0]['ra_source'],
                                                                 sourcePos_y=self.kwargs_ps[0]['dec_source'],
                                                                 kwargs_lens=self.kwargs_lens)
        ra_pos_new = x_im[0]
        npt.assert_almost_equal(ra_pos_new[0], ra_pos[0], decimal=8)
        npt.assert_almost_equal(ra_pos_new[1], ra_pos[1], decimal=8)
        npt.assert_almost_equal(ra_pos_new[2], ra_pos[2], decimal=8)
        npt.assert_almost_equal(ra_pos_new[3], ra_pos[3], decimal=8)


    def test_likelihood_data_given_model(self):
        logL = self.imageModel.likelihood_data_given_model(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, source_marg=False)
        npt.assert_almost_equal(logL, -5100, decimal=-3)

        logLmarg = self.imageModel.likelihood_data_given_model(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light,
                                                               self.kwargs_ps, source_marg=True)
        npt.assert_almost_equal(logL - logLmarg, 0, decimal=-2)

    def test_numData_evaluate(self):
        numData = self.imageModel.numData_evaluate()
        assert numData == 10000

    def test_fermat_potential(self):
        phi_fermat = self.imageModel.fermat_potential(self.kwargs_lens, self.kwargs_ps)
        phi_fermat = phi_fermat[0]
        npt.assert_almost_equal(phi_fermat[0], -0.2719737, decimal=3)
        npt.assert_almost_equal(phi_fermat[1], -0.2719737, decimal=3)
        npt.assert_almost_equal(phi_fermat[2], -0.51082354, decimal=3)
        npt.assert_almost_equal(phi_fermat[3], -0.51082354, decimal=3)
Пример #4
0
class SingleBand(object):
    """
    class to operate on single exposure
    """
    def __init__(self, collector_area, numPix, deltaPix, readout_noise,
                 sky_brightness, extinction, exposure_time, psf_type, fwhm,
                 *args, **kwargs):
        """
        :param collector_area: area of collector in m^2
        :param numPix: number of pixels
        :param deltaPix: FoV per pixel in units of arcsec
        :param readout_noise: rms value of readout per pixel in units of photons
        :param sky_brightness: number of photons of sky per area (arcsec) per time (second) for a collector area (1 m^2)
        :param extinction: exctinction (galactic and atmosphere combined).
        Only use this if magnitude calibration is done without it.
        :param exposure_time: exposure time (seconds)
        :param psf_type:
        :param fwhm:
        :param args:
        :param kwargs:
        """
        self.simulation = Simulation()
        sky_per_pixel = sky_brightness * collector_area * deltaPix**2  # time independent noise term per pixel per second
        sigma_bkg = np.sqrt(
            readout_noise**2 + exposure_time * sky_per_pixel**2
        ) / exposure_time  # total Gaussian noise term per pixel in full exposure (in units of counts per second)
        kwargs_data = self.simulation.data_configure(numPix, deltaPix,
                                                     exposure_time, sigma_bkg)
        self._data = Data(kwargs_data)
        kwargs_psf = self.simulation.psf_configure(psf_type, fwhm)
        self._psf = PSF(kwargs_psf)
        self._flux_calibration_factor = collector_area / extinction * deltaPix**2  # transforms intrinsic surface brightness per angular area into the flux normalizations per pixel

    def simulate(self,
                 kwargs_options,
                 kwargs_lens,
                 kwargs_source,
                 kwargs_lens_light,
                 kwargs_else,
                 lens_colour,
                 source_colour,
                 quasar_colour,
                 no_noise=False,
                 source_add=True,
                 lens_light_add=True,
                 point_source_add=True):
        """

        :param kwargs_options:
        :param kwargs_lens:
        :param kwargs_source:
        :param kwargs_lens_light:
        :param kwargs_else:
        :param no_noise:
        :return:
        """
        lensLightModel = LightModel(
            kwargs_options.get('lens_light_model_list', []))
        sourceModel = LightModel(
            kwargs_options.get('source_light_model_list', []))
        lensModel = LensModel(
            lens_model_list=kwargs_options.get('lens_model_list', []))
        pointSource = PointSource(
            point_source_type_list=kwargs_options.get('point_source_list', []),
            lensModel=lensModel,
            fixed_magnification_list=kwargs_options.get(
                'fixed_magnification_list', None),
            additional_images_list=kwargs_options.get('additional_images',
                                                      None))

        norm_factor_source = self._flux_calibration_factor * source_colour
        norm_factor_lens_light = self._flux_calibration_factor * lens_colour
        norm_factor_point_source = self._flux_calibration_factor * quasar_colour
        kwargs_source_updated, kwargs_lens_light_updated, kwargs_else_updated = self.simulation.normalize_flux(
            kwargs_options, kwargs_source, kwargs_lens_light, kwargs_else,
            norm_factor_source, norm_factor_lens_light,
            norm_factor_point_source)
        imageModel = ImageModel(self._data,
                                self._psf,
                                lensModel,
                                sourceModel,
                                lensLightModel,
                                pointSource,
                                kwargs_numerics={})
        image = self.simulation.simulate(imageModel,
                                         kwargs_lens,
                                         kwargs_source_updated,
                                         kwargs_lens_light_updated,
                                         kwargs_else_updated,
                                         no_noise=no_noise,
                                         source_add=source_add,
                                         lens_light_add=lens_light_add,
                                         point_source_add=point_source_add)
        return image

    def source_plane(self,
                     kwargs_options,
                     kwargs_source,
                     source_colour,
                     numPix=100,
                     deltaPix=0.01):
        """

        :param kwargs_options:
        :param kwargs_source:
        :param kwargs_else:
        :param source_colour:
        :param numPix:
        :param deltaPix:
        :return:
        """
        norm_factor_source = self._flux_calibration_factor * source_colour
        kwargs_source_updated = self.simulation.normalize_flux_source(
            kwargs_options, kwargs_source, norm_factor_source)
        image = self.simulation.source_plane(kwargs_options,
                                             kwargs_source_updated, numPix,
                                             deltaPix)
        return image
Пример #5
0
class TestLikelihood(object):
    """
    test the fitting sequences
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                sigma_bkg)
        psf_class = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                              fwhm=fwhm,
                                              kernelsize=31,
                                              deltaPix=deltaPix,
                                              truncate=3,
                                              kernel=None)
        psf_class = self.SimAPI.psf_configure(
            psf_type='PIXEL',
            fwhm=fwhm,
            kernelsize=31,
            deltaPix=deltaPix,
            truncate=6,
            kernel=psf_class.kernel_point_source)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_list = ['SOURCE_POSITION']
        point_source_class = PointSource(
            point_source_type_list=point_source_list,
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                point_source_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light,
                                         self.kwargs_ps)

        data_class.update_data(image_sim)
        self.kwargs_data = data_class.constructor_kwargs()
        self.kwargs_psf = psf_class.constructor_kwargs()
        self.kwargs_model = {
            'lens_model_list': lens_model_list,
            'source_light_model_list': source_model_list,
            'lens_light_model_list': lens_light_model_list,
            'point_source_model_list': point_source_list,
            'fixed_magnification_list': [False],
        }
        self.kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}

        num_source_model = len(source_model_list)

        self.kwargs_constraints = {
            'joint_center_lens_light': False,
            'joint_center_source_light': False,
            'num_point_source_list': [4],
            'additional_images_list': [False],
            'fix_to_point_source_list': [False] * num_source_model,
            'image_plane_source_list': [False] * num_source_model,
            'solver': False,
            'solver_type':
            'PROFILE_SHEAR',  # 'PROFILE', 'PROFILE_SHEAR', 'ELLIPSE', 'CENTER'
        }

        self.kwargs_likelihood = {
            'check_bounds': True,
            'force_no_add_image': True,
            'source_marg': True,
            'point_source_likelihood': False,
            'position_uncertainty': 0.004,
            'check_solver': True,
            'solver_tolerance': 0.001
        }
        kwargs_fixed = [[{}, {}], [{}], [{}], [{}]]
        image_band = [self.kwargs_data, self.kwargs_psf, self.kwargs_numerics]
        multi_band_list = [image_band]
        kwargs_init = [
            self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light,
            self.kwargs_ps
        ]
        self.likelihoodModule = LikelihoodModule(
            multi_band_list,
            self.kwargs_model,
            self.kwargs_constraints,
            self.kwargs_likelihood,
            kwargs_fixed,
            kwargs_lower=kwargs_init,
            kwargs_upper=kwargs_init,
            kwargs_lens_init=self.kwargs_lens,
            compute_bool=None)

        kwargs_fixed_lens, kwargs_fixed_source, kwargs_fixed_lens_light, kwargs_fixed_ps = kwargs_fixed
        self.param = Param(self.kwargs_model,
                           self.kwargs_constraints,
                           kwargs_fixed_lens,
                           kwargs_fixed_source,
                           kwargs_fixed_lens_light,
                           kwargs_fixed_ps,
                           kwargs_lens_init=self.kwargs_lens)

    def test_likelihood(self):
        args = self.param.setParams(self.kwargs_lens, self.kwargs_source,
                                    self.kwargs_lens_light, self.kwargs_ps)
        kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps = self.param.getParams(
            args)
        print(kwargs_lens, self.kwargs_lens)
        logL, _ = self.likelihoodModule.X2_chain(args)
        num_eff = self.likelihoodModule.effectiv_numData_points()
        npt.assert_almost_equal(-logL / num_eff * 2,
                                1.0290933517488736,
                                decimal=1)
Пример #6
0
class TestFittingSequence(object):
    """
    test the fitting sequences
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 10  # cutout pixel size
        deltaPix = 0.1  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        kwargs_data = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                 sigma_bkg)
        data_class = Data(kwargs_data)
        kwargs_psf = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                               fwhm=fwhm,
                                               kernelsize=11,
                                               deltaPix=deltaPix,
                                               truncate=3,
                                               kernel=None)
        kwargs_psf = self.SimAPI.psf_configure(
            psf_type='PIXEL',
            fwhm=fwhm,
            kernelsize=11,
            deltaPix=deltaPix,
            truncate=6,
            kernel=kwargs_psf['kernel_point_source'])
        psf_class = PSF(kwargs_psf)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }

        lens_model_list = ['SPEP']
        self.kwargs_lens = [kwargs_spemd]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 3,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)

        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light)

        data_class.update_data(image_sim)
        self.data_class = data_class
        self.psf_class = psf_class

        kwargs_model = {
            'lens_model_list': lens_model_list,
            'source_light_model_list': source_model_list,
            'lens_light_model_list': lens_light_model_list,
            'fixed_magnification_list': [False],
        }
        self.kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}

        num_source_model = len(source_model_list)

        kwargs_constraints = {
            'joint_center_lens_light': False,
            'joint_center_source_light': False,
            'additional_images_list': [False],
            'fix_to_point_source_list': [False] * num_source_model,
            'image_plane_source_list': [False] * num_source_model,
            'solver': False,
        }

        kwargs_likelihood = {
            'source_marg': True,
            'point_source_likelihood': False,
            'position_uncertainty': 0.004,
            'check_solver': False,
            'solver_tolerance': 0.001,
        }
        self.param_class = Param(kwargs_model, kwargs_constraints)
        self.Likelihood = LikelihoodModule(imSim_class=imageModel,
                                           param_class=self.param_class,
                                           kwargs_likelihood=kwargs_likelihood)
        self.sampler = Sampler(likelihoodModule=self.Likelihood)

    def test_pso(self):
        n_particles = 2
        n_iterations = 2
        result, chain = self.sampler.pso(n_particles,
                                         n_iterations,
                                         lower_start=None,
                                         upper_start=None,
                                         threadCount=1,
                                         init_pos=None,
                                         mpi=False,
                                         print_key='PSO')

        assert len(result) == 16

    def test_mcmc_emcee(self):
        n_walkers = 36
        n_run = 2
        n_burn = 2
        mean_start = self.param_class.setParams(
            kwargs_lens=self.kwargs_lens,
            kwargs_source=self.kwargs_source,
            kwargs_lens_light=self.kwargs_lens_light)
        sigma_start = np.ones_like(mean_start) * 0.1
        samples = self.sampler.mcmc_emcee(n_walkers,
                                          n_run,
                                          n_burn,
                                          mean_start,
                                          sigma_start,
                                          mpi=False)

        assert len(samples) == n_walkers * n_run

    def test_mcmc_CH(self):
        walkerRatio = 2
        n_run = 2
        n_burn = 2
        mean_start = self.param_class.setParams(
            kwargs_lens=self.kwargs_lens,
            kwargs_source=self.kwargs_source,
            kwargs_lens_light=self.kwargs_lens_light)
        sigma_start = np.ones_like(mean_start) * 0.1
        self.sampler.mcmc_CH(walkerRatio,
                             n_run,
                             n_burn,
                             mean_start,
                             sigma_start,
                             threadCount=1,
                             init_pos=None,
                             mpi=False)
Пример #7
0
class TestImageModel(object):
    """
    tests the source model routines
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.01  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                sigma_bkg)
        sigma = util.fwhm2sigma(fwhm)
        x_grid, y_grid = util.make_grid(numPix=31, deltapix=0.05)
        from lenstronomy.LightModel.Profiles.gaussian import Gaussian
        gaussian = Gaussian()
        kernel_point_source = gaussian.function(x_grid,
                                                y_grid,
                                                amp=1.,
                                                sigma_x=sigma,
                                                sigma_y=sigma,
                                                center_x=0,
                                                center_y=0)
        kernel_point_source /= np.sum(kernel_point_source)
        kernel_point_source = util.array2image(kernel_point_source)
        self.kwargs_psf = {
            'psf_type': 'PIXEL',
            'kernel_point_source': kernel_point_source
        }

        psf_class = PSF(kwargs_psf=self.kwargs_psf)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_class = PointSource(
            point_source_type_list=['SOURCE_POSITION'],
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 3, 'psf_subgrid': True}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                point_source_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light,
                                         self.kwargs_ps)
        data_class.update_data(image_sim)
        self.imageModel = ImageModel(data_class,
                                     psf_class,
                                     lens_model_class,
                                     source_model_class,
                                     lens_light_model_class,
                                     point_source_class,
                                     kwargs_numerics=kwargs_numerics)
        self.psf_fitting = PsfFitting(self.imageModel)

    def test_update_psf(self):
        fwhm = 0.3
        sigma = util.fwhm2sigma(fwhm)
        x_grid, y_grid = util.make_grid(numPix=31, deltapix=0.05)
        from lenstronomy.LightModel.Profiles.gaussian import Gaussian
        gaussian = Gaussian()
        kernel_point_source = gaussian.function(x_grid,
                                                y_grid,
                                                amp=1.,
                                                sigma_x=sigma,
                                                sigma_y=sigma,
                                                center_x=0,
                                                center_y=0)
        kernel_point_source /= np.sum(kernel_point_source)
        kernel_point_source = util.array2image(kernel_point_source)
        kwargs_psf = {
            'psf_type': 'PIXEL',
            'kernel_point_source': kernel_point_source
        }

        kwargs_psf_return, improved_bool = self.psf_fitting.update_psf(
            kwargs_psf,
            self.kwargs_lens,
            self.kwargs_source,
            self.kwargs_lens_light,
            self.kwargs_ps,
            factor=0.1,
            symmetry=1)
        assert improved_bool
        kernel_new = kwargs_psf_return['kernel_point_source']
        kernel_true = self.kwargs_psf['kernel_point_source']
        kernel_old = kwargs_psf['kernel_point_source']
        diff_old = np.sum((kernel_old - kernel_true)**2)
        diff_new = np.sum((kernel_new - kernel_true)**2)
        assert diff_old > diff_new

    def test_update_iterative(self):
        fwhm = 0.3
        sigma = util.fwhm2sigma(fwhm)
        x_grid, y_grid = util.make_grid(numPix=31, deltapix=0.05)
        from lenstronomy.LightModel.Profiles.gaussian import Gaussian
        gaussian = Gaussian()
        kernel_point_source = gaussian.function(x_grid,
                                                y_grid,
                                                amp=1.,
                                                sigma_x=sigma,
                                                sigma_y=sigma,
                                                center_x=0,
                                                center_y=0)
        kernel_point_source /= np.sum(kernel_point_source)
        kernel_point_source = util.array2image(kernel_point_source)
        kwargs_psf = {
            'psf_type': 'PIXEL',
            'kernel_point_source': kernel_point_source
        }

        kwargs_psf_new = self.psf_fitting.update_iterative(
            kwargs_psf,
            self.kwargs_lens,
            self.kwargs_source,
            self.kwargs_lens_light,
            self.kwargs_ps,
            factor=0.2,
            num_iter=3,
            symmetry=1)
        kernel_new = kwargs_psf_new['kernel_point_source']
        kernel_true = self.kwargs_psf['kernel_point_source']
        kernel_old = kwargs_psf['kernel_point_source']
        diff_old = np.sum((kernel_old - kernel_true)**2)
        diff_new = np.sum((kernel_new - kernel_true)**2)
        assert diff_old > diff_new
        assert diff_new < 0.01

        kwargs_psf_new = self.psf_fitting.update_iterative(
            kwargs_psf,
            self.kwargs_lens,
            self.kwargs_source,
            self.kwargs_lens_light,
            self.kwargs_ps,
            factor=0.2,
            num_iter=3,
            symmetry=1,
            no_break=True)
        kernel_new = kwargs_psf_new['kernel_point_source']
        kernel_true = self.kwargs_psf['kernel_point_source']
        kernel_old = kwargs_psf['kernel_point_source']
        diff_old = np.sum((kernel_old - kernel_true)**2)
        diff_new = np.sum((kernel_new - kernel_true)**2)
        assert diff_old > diff_new
        assert diff_new < 0.01

    def test_mask_point_sources(self):
        ra_image, dec_image, amp = self.imageModel.PointSource.point_source_list(
            self.kwargs_ps, self.kwargs_lens)
        print(ra_image, dec_image, amp)
        x_grid, y_grid = self.imageModel.Data.coordinates
        radius = 0.5
        mask_point_source_list = self.psf_fitting.mask_point_sources(
            ra_image, dec_image, x_grid, y_grid, radius)
        assert mask_point_source_list[0][10, 10] == 1
Пример #8
0
class TestOutputPlots(object):
    """
    test the fitting sequences
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                sigma_bkg)
        psf_class = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                              fwhm=fwhm,
                                              kernelsize=31,
                                              deltaPix=deltaPix,
                                              truncate=3,
                                              kernel=None)
        psf_class = self.SimAPI.psf_configure(
            psf_type='PIXEL',
            fwhm=fwhm,
            kernelsize=31,
            deltaPix=deltaPix,
            truncate=6,
            kernel=psf_class.kernel_point_source)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        self.LensModel = lens_model_class
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_list = ['SOURCE_POSITION']
        point_source_class = PointSource(
            point_source_type_list=point_source_list,
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                point_source_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light,
                                         self.kwargs_ps)

        data_class.update_data(image_sim)
        self.kwargs_data = data_class.constructor_kwargs()
        self.kwargs_psf = psf_class.constructor_kwargs()
        self.kwargs_model = {
            'lens_model_list': lens_model_list,
            'source_light_model_list': source_model_list,
            'lens_light_model_list': lens_light_model_list,
            'point_source_model_list': point_source_list,
            'fixed_magnification_list': [False],
        }
        self.kwargs_numerics = kwargs_numerics
        self.data_class = Data(self.kwargs_data)

    def test_lensModelPlot(self):

        lensPlot = LensModelPlot(self.kwargs_data,
                                 self.kwargs_psf,
                                 self.kwargs_numerics,
                                 self.kwargs_model,
                                 self.kwargs_lens,
                                 self.kwargs_source,
                                 self.kwargs_lens_light,
                                 self.kwargs_ps,
                                 arrow_size=0.02,
                                 cmap_string="gist_heat",
                                 high_res=5)

        f, axes = plt.subplots(2,
                               3,
                               figsize=(16, 8),
                               sharex=False,
                               sharey=False)

        lensPlot.data_plot(ax=axes[0, 0])
        lensPlot.model_plot(ax=axes[0, 1])
        lensPlot.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6)
        lensPlot.source_plot(ax=axes[1, 0],
                             convolution=False,
                             deltaPix_source=0.01,
                             numPix=100)
        lensPlot.convergence_plot(ax=axes[1, 1], v_max=1)
        lensPlot.magnification_plot(ax=axes[1, 2])
        plt.close()

        f, axes = plt.subplots(2,
                               3,
                               figsize=(16, 8),
                               sharex=False,
                               sharey=False)

        lensPlot.decomposition_plot(ax=axes[0, 0],
                                    text='Lens light',
                                    lens_light_add=True,
                                    unconvolved=True)
        lensPlot.decomposition_plot(ax=axes[1, 0],
                                    text='Lens light convolved',
                                    lens_light_add=True)
        lensPlot.decomposition_plot(ax=axes[0, 1],
                                    text='Source light',
                                    source_add=True,
                                    unconvolved=True)
        lensPlot.decomposition_plot(ax=axes[1, 1],
                                    text='Source light convolved',
                                    source_add=True)
        lensPlot.decomposition_plot(ax=axes[0, 2],
                                    text='All components',
                                    source_add=True,
                                    lens_light_add=True,
                                    unconvolved=True)
        lensPlot.decomposition_plot(ax=axes[1, 2],
                                    text='All components convolved',
                                    source_add=True,
                                    lens_light_add=True,
                                    point_source_add=True)
        plt.close()

        f, axes = plt.subplots(2,
                               3,
                               figsize=(16, 8),
                               sharex=False,
                               sharey=False)

        lensPlot.subtract_from_data_plot(ax=axes[0, 0], text='Data')
        lensPlot.subtract_from_data_plot(ax=axes[0, 1],
                                         text='Data - Point Source',
                                         point_source_add=True)
        lensPlot.subtract_from_data_plot(ax=axes[0, 2],
                                         text='Data - Lens Light',
                                         lens_light_add=True)
        lensPlot.subtract_from_data_plot(ax=axes[1, 0],
                                         text='Data - Source Light',
                                         source_add=True)
        lensPlot.subtract_from_data_plot(
            ax=axes[1, 1],
            text='Data - Source Light - Point Source',
            source_add=True,
            point_source_add=True)
        lensPlot.subtract_from_data_plot(
            ax=axes[1, 2],
            text='Data - Lens Light - Point Source',
            lens_light_add=True,
            point_source_add=True)
        plt.close()

        f, ax = plt.subplots(1, 1, figsize=(4, 4))
        lensPlot.deflection_plot(ax=ax)
        plt.close()

        numPix = 100
        deltaPix_source = 0.01
        f, ax = plt.subplots(1, 1, figsize=(4, 4))
        lensPlot.error_map_source_plot(ax, numPix, deltaPix_source)
        plt.close()

        f, ax = plt.subplots(1, 1, figsize=(4, 4))
        lensPlot.absolute_residual_plot(ax=ax)
        plt.close()

    def test_lens_model_plot(self):
        f, ax = plt.subplots(1, 1, figsize=(4, 4))
        numPix = 100
        deltaPix = 0.05
        ax = output_plots.lens_model_plot(ax,
                                          self.LensModel,
                                          self.kwargs_lens,
                                          numPix,
                                          deltaPix,
                                          sourcePos_x=0,
                                          sourcePos_y=0,
                                          point_source=True)
        plt.close()

    def test_psf_iteration_compare(self):
        kwargs_psf = self.kwargs_psf
        kwargs_psf['kernel_point_source_init'] = kwargs_psf[
            'kernel_point_source']
        f, ax = output_plots.psf_iteration_compare(kwargs_psf=kwargs_psf)
        plt.close()

    def test_external_shear_direction(self):
        f, ax = output_plots.ext_shear_direction(
            data_class=self.data_class,
            lens_model_class=self.LensModel,
            kwargs_lens=self.kwargs_lens,
            strength_multiply=10)
        plt.close()

    def test_plot_chain(self):
        X2_list = [1, 1, 2]
        pos_list = [[1, 0], [2, 0], [3, 0]]
        vel_list = [[-1, 0], [0, 0], [1, 0]]
        param_list = ['test1', 'test2']
        chain = X2_list, pos_list, vel_list, None
        output_plots.plot_chain(chain=chain, param_list=param_list)
        plt.close()
Пример #9
0
# To Create a mask around the central object
masksize=40 #mask size in pixels
msmin = int(pix/2) - int(masksize/2)
msmax = int(pix/2) + int(masksize/2)
catmask = cat[:,msmin:msmax,msmin:msmax]

# data specifics
sigma_bkg = .1  # background noise per pixel
exp_time = 90  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
numPix = pix  # cutout pixel size
deltaPix = 0.27  # pixel size in arcsec (area per pixel = deltaPix**2)
fwhm = 0.958  # full width half max of PSF


#Data
kwargs_data = SimAPI.data_configure(pix, deltaPix, exp_time, sigma_bkg)
data_class = Data(kwargs_data)
#Mask
kwargs_data_mask = SimAPI.data_configure(masksize, deltaPix, exp_time, sigma_bkg)
data_class_mask = Data(kwargs_data_mask)
# PSF specification
kwargs_psf = SimAPI.psf_configure(psf_type='GAUSSIAN', fwhm=fwhm, kernelsize=31, deltaPix=deltaPix, truncate=6, kernel=None)
psf_class = PSF(kwargs_psf)

#********************************************************************************#
#								SOURCE DEFINITION					 			 #
#********************************************************************************#

source_ALL = cat[1]

# CIRCULAR MASK FOR THE SOURCE, where pix is the size of the image, radius is the radius of the mask in pixels
Пример #10
0
class TestSimulation(object):
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 1.  # background noise per pixel
        exp_time = 10  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        kwargs_data = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                 sigma_bkg)
        data_class = Data(kwargs_data)

        kwargs_psf = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                               fwhm=fwhm,
                                               kernelsize=31,
                                               deltaPix=deltaPix,
                                               truncate=5)
        psf_class = PSF(kwargs_psf)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        e1, e2 = param_util.phi_q2_ellipticity(0.2, 0.8)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'e1': e1,
            'e2': e2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.2,
            'e2': 0.3
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_class = PointSource(
            point_source_type_list=['SOURCE_POSITION'],
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}
        self.imageModel = ImageModel(data_class,
                                     psf_class,
                                     lens_model_class,
                                     source_model_class,
                                     lens_light_model_class,
                                     point_source_class,
                                     kwargs_numerics=kwargs_numerics)

    def test_im_sim(self):
        # model specifics

        # list of lens models, supports:

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        e1, e2 = param_util.phi_q2_ellipticity(0.2, 0.8)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'e1': e1,
            'e2': e2
        }
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.2,
            'e2': 0.3
        }

        kwargs_lens_light_list = [kwargs_sersic]
        kwargs_source_list = [kwargs_sersic_ellipse]
        kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        image_sim = self.SimAPI.simulate(self.imageModel, kwargs_lens_list,
                                         kwargs_source_list,
                                         kwargs_lens_light_list, kwargs_ps)

        assert len(image_sim) == 100
        npt.assert_almost_equal(np.sum(image_sim),
                                14894.805448596271,
                                decimal=-3)

    def test_normalize_flux(self):
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]

        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.2,
            'e2': 0.3
        }
        lens_light_model_list = ['SERSIC']
        kwargs_lens_light_list = [kwargs_sersic]
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source_list = [kwargs_sersic_ellipse]

        kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness

        kwargs_options = {
            'lens_model_list': lens_model_list,
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'PIXEL',
            'point_source_list': ['SOURCE_POSITION'],
            'fixed_magnification': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_ps
        }
        #image_sim = self.SimAPI.simulate(self.imageModel, kwargs_lens_list, kwargs_source_list,
        #                          kwargs_lens_light_list, kwargs_ps)
        kwargs_source_updated, kwargs_lens_light_updated, kwargs_else_updated = self.SimAPI.normalize_flux(
            kwargs_options,
            kwargs_source_list,
            kwargs_lens_light_list,
            kwargs_ps,
            norm_factor_source=3,
            norm_factor_lens_light=2,
            norm_factor_point_source=0.)
        print(kwargs_else_updated, 'test')
        assert kwargs_else_updated[0]['source_amp'] == 0

    def test_normalize_flux_source(self):
        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]

        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.2,
            'e2': 0.3
        }

        lens_light_model_list = ['SERSIC']
        kwargs_lens_light_list = [kwargs_sersic]
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source_list = [kwargs_sersic_ellipse]
        kwargs_options = {
            'lens_model_list': lens_model_list,
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'PIXEL',
            'point_source': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_else
        }
        kwargs_source_updated = self.SimAPI.normalize_flux_source(
            kwargs_options, kwargs_source_list, norm_factor_source=10)
        assert kwargs_source_updated[0][
            'amp'] == kwargs_source_list[0]['amp'] * 10

    def test_source_plane(self):
        numPix = 10
        deltaPix = 0.1
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.2,
            'e2': 0.3
        }

        lens_light_model_list = ['SERSIC']
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source = [kwargs_sersic_ellipse]
        kwargs_options = {
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'pixel',
            'point_source': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_else
        }
        source = self.SimAPI.source_plane(kwargs_options, kwargs_source,
                                          numPix, deltaPix)
        assert len(source) == numPix
Пример #11
0
class TestFittingSequence(object):
    """
    test the fitting sequences
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                sigma_bkg)
        psf_class = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                              fwhm=fwhm,
                                              kernelsize=31,
                                              deltaPix=deltaPix,
                                              truncate=3,
                                              kernel=None)
        psf_class = self.SimAPI.psf_configure(
            psf_type='PIXEL',
            fwhm=fwhm,
            kernelsize=31,
            deltaPix=deltaPix,
            truncate=6,
            kernel=psf_class.kernel_point_source)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_list = ['SOURCE_POSITION']
        point_source_class = PointSource(
            point_source_type_list=point_source_list,
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                point_source_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light,
                                         self.kwargs_ps)

        data_class.update_data(image_sim)
        self.data_class = data_class
        self.psf_class = psf_class
        self.kwargs_data = data_class.constructor_kwargs()
        self.kwargs_psf = psf_class.constructor_kwargs()
        self.kwargs_model = {
            'lens_model_list': lens_model_list,
            'source_light_model_list': source_model_list,
            'lens_light_model_list': lens_light_model_list,
            'point_source_model_list': point_source_list,
            'fixed_magnification_list': [False],
        }
        self.kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}

        num_source_model = len(source_model_list)

        self.kwargs_constraints = {
            'joint_center_lens_light': False,
            'joint_center_source_light': False,
            'num_point_source_list': [4],
            'additional_images_list': [False],
            'fix_to_point_source_list': [False] * num_source_model,
            'image_plane_source_list': [False] * num_source_model,
            'solver': False,
            'solver_type':
            'PROFILE_SHEAR',  # 'PROFILE', 'PROFILE_SHEAR', 'ELLIPSE', 'CENTER'
        }

        self.kwargs_likelihood = {
            'force_no_add_image': True,
            'source_marg': True,
            'point_source_likelihood': False,
            'position_uncertainty': 0.004,
            'check_solver': True,
            'solver_tolerance': 0.001
        }

    def test_simulationAPI_image(self):
        npt.assert_almost_equal(self.data_class.data[4, 4], 0.1, decimal=0)

    def test_simulationAPI_psf(self):
        npt.assert_almost_equal(self.psf_class.kernel_pixel[1, 1],
                                1.681921511056146e-07,
                                decimal=8)

    def test_fitting_sequence(self):
        kwargs_init = [
            self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light,
            self.kwargs_ps
        ]
        lens_sigma = [{
            'theta_E_sigma': 0.1,
            'gamma_sigma': 0.1,
            'ellipse_sigma': 0.1,
            'center_x_sigma': 0.1,
            'center_y_sigma': 0.1
        }, {
            'shear_sigma': 0.1
        }]
        source_sigma = [{
            'R_sersic_sigma': 0.05,
            'n_sersic_sigma': 0.5,
            'center_x_sigma': 0.1,
            'center_y_sigma': 0.1,
            'ellipse_sigma': 0.1
        }]
        lens_light_sigma = [{
            'R_sersic_sigma': 0.05,
            'n_sersic_sigma': 0.5,
            'center_x_sigma': 0.1,
            'center_y_sigma': 0.1
        }]
        ps_sigma = [{'pos_sigma': 1, 'point_amp_sigma': 1}]
        kwargs_sigma = [lens_sigma, source_sigma, lens_light_sigma, ps_sigma]
        kwargs_fixed = [[{}, {}], [{}], [{}], [{}]]
        kwargs_params = [
            kwargs_init, kwargs_sigma, kwargs_fixed, kwargs_init, kwargs_init
        ]
        image_band = [self.kwargs_data, self.kwargs_psf, self.kwargs_numerics]
        multi_band_list = [image_band]
        fittingSequence = FittingSequence(multi_band_list, self.kwargs_model,
                                          self.kwargs_constraints,
                                          self.kwargs_likelihood,
                                          kwargs_params)

        lens_temp, source_temp, lens_light_temp, else_temp, chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fittingSequence.fit_sequence(
            fitting_kwargs_list=[])
        npt.assert_almost_equal(lens_temp[0]['theta_E'],
                                self.kwargs_lens[0]['theta_E'],
                                decimal=2)

        n_p = 2
        n_i = 2
        """
Пример #12
0
class TestImageModel(object):
    """
    tests the source model routines
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = .05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        kwargs_data = self.SimAPI.data_configure(numPix, deltaPix, exp_time, sigma_bkg)
        data_class = Data(kwargs_data)
        kwargs_psf = self.SimAPI.psf_configure(psf_type='GAUSSIAN', fwhm=fwhm, kernelsize=31, deltaPix=deltaPix, truncate=3,
                                          kernel=None)
        psf_class = PSF(kwargs_psf)
        psf_class._psf_error_map = np.zeros_like(psf_class.kernel_point_source)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {'e1': 0.01, 'e2': 0.01}  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        phi, q = 0.2, 0.8
        e1, e2 = param_util.phi_q2_ellipticity(phi, q)
        kwargs_spemd = {'theta_E': 1., 'gamma': 1.8, 'center_x': 0, 'center_y': 0, 'e1': e1, 'e2': e2}

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {'amp': 1., 'R_sersic': 0.1, 'n_sersic': 2, 'center_x': 0, 'center_y': 0}
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        phi, q = 0.2, 0.9
        e1, e2 = param_util.phi_q2_ellipticity(phi, q)
        kwargs_sersic_ellipse = {'amp': 1., 'R_sersic': .6, 'n_sersic': 7, 'center_x': 0, 'center_y': 0,
                                 'e1': e1, 'e2': e2}

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [{'ra_source': 0.01, 'dec_source': 0.0,
                       'source_amp': 1.}]  # quasar point source position in the source plane and intrinsic brightness
        point_source_class = PointSource(point_source_type_list=['SOURCE_POSITION'], fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}
        imageModel = ImageModel(data_class, psf_class, lens_model_class, source_model_class, lens_light_model_class, point_source_class, kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens, self.kwargs_source,
                                       self.kwargs_lens_light, self.kwargs_ps)
        data_class.update_data(image_sim)

        self.imageModel = ImageModel(data_class, psf_class, lens_model_class, source_model_class, lens_light_model_class, point_source_class, kwargs_numerics=kwargs_numerics)
        self.solver = LensEquationSolver(lensModel=self.imageModel.LensModel)

    def test_source_surface_brightness(self):
        source_model = self.imageModel.source_surface_brightness(self.kwargs_source, self.kwargs_lens, unconvolved=False, de_lensed=False)
        assert len(source_model) == 100
        npt.assert_almost_equal(source_model[10, 10], 0.13939841209844345, decimal=4)

        source_model = self.imageModel.source_surface_brightness(self.kwargs_source, self.kwargs_lens, unconvolved=True, de_lensed=False)
        assert len(source_model) == 100
        npt.assert_almost_equal(source_model[10, 10], 0.13536114618182182, decimal=4)

    def test_lens_surface_brightness(self):
        lens_flux = self.imageModel.lens_surface_brightness(self.kwargs_lens_light, unconvolved=False)
        npt.assert_almost_equal(lens_flux[50, 50], 0.54214440654021534, decimal=4)

        lens_flux = self.imageModel.lens_surface_brightness(self.kwargs_lens_light, unconvolved=True)
        npt.assert_almost_equal(lens_flux[50, 50], 4.7310552067454452, decimal=4)

    def test_image_linear_solve(self):
        model, error_map, cov_param, param = self.imageModel.image_linear_solve(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, inv_bool=False)
        chi2_reduced = self.imageModel.reduced_chi2(model, error_map)
        npt.assert_almost_equal(chi2_reduced, 1, decimal=1)

    def test_image_with_params(self):
        model = self.imageModel.image(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, unconvolved=False, source_add=True, lens_light_add=True, point_source_add=True)
        error_map = self.imageModel.error_map(self.kwargs_lens, self.kwargs_ps)
        chi2_reduced = self.imageModel.reduced_chi2(model, error_map)
        npt.assert_almost_equal(chi2_reduced, 1, decimal=1)

    def test_point_sources_list(self):
        point_source_list = self.imageModel.point_sources_list(self.kwargs_ps, self.kwargs_lens)
        assert len(point_source_list) == 4

    def test_image_positions(self):
        x_im, y_im = self.imageModel.image_positions(self.kwargs_ps, self.kwargs_lens)
        ra_pos, dec_pos = self.solver.image_position_from_source(sourcePos_x=self.kwargs_ps[0]['ra_source'],
                                                                 sourcePos_y=self.kwargs_ps[0]['dec_source'],
                                                                 kwargs_lens=self.kwargs_lens)
        ra_pos_new = x_im[0]
        print(ra_pos_new, ra_pos)
        npt.assert_almost_equal(ra_pos_new[0], ra_pos[0], decimal=8)
        npt.assert_almost_equal(ra_pos_new[1], ra_pos[1], decimal=8)
        npt.assert_almost_equal(ra_pos_new[2], ra_pos[2], decimal=8)
        npt.assert_almost_equal(ra_pos_new[3], ra_pos[3], decimal=8)

    def test_likelihood_data_given_model(self):
        logL = self.imageModel.likelihood_data_given_model(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps, source_marg=False)
        npt.assert_almost_equal(logL, -5000, decimal=-3)

        logLmarg = self.imageModel.likelihood_data_given_model(self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light,
                                                               self.kwargs_ps, source_marg=True)
        npt.assert_almost_equal(logL - logLmarg, 0, decimal=-3)

    def test_reduced_residuals(self):
        model = self.SimAPI.simulate(self.imageModel, self.kwargs_lens, self.kwargs_source,
                                         self.kwargs_lens_light, self.kwargs_ps, no_noise=True)
        residuals = self.imageModel.reduced_residuals(model, error_map=0)
        npt.assert_almost_equal(np.std(residuals), 1.01, decimal=1)

        chi2 = self.imageModel.reduced_chi2(model, error_map=0)
        npt.assert_almost_equal(chi2, 1, decimal=1)

    def test_numData_evaluate(self):
        numData = self.imageModel.numData_evaluate()
        assert numData == 10000

    def test_fermat_potential(self):
        phi_fermat = self.imageModel.fermat_potential(self.kwargs_lens, self.kwargs_ps)
        print(phi_fermat)
        npt.assert_almost_equal(phi_fermat[0][0], -0.2630531731871062, decimal=3)
        npt.assert_almost_equal(phi_fermat[0][1], -0.2809100018126987, decimal=3)
        npt.assert_almost_equal(phi_fermat[0][2], -0.5086643370512096, decimal=3)
        npt.assert_almost_equal(phi_fermat[0][3], -0.5131716608238992, decimal=3)

    def test_add_mask(self):
        mask = np.array([[0, 1],[1, 0]])
        A = np.ones((10, 4))
        A_masked = self.imageModel._add_mask(A, mask)
        assert A[0, 1] == A_masked[0, 1]
        assert A_masked[0, 3] == 0

    def test_point_source_rendering(self):
        # initialize data
        from lenstronomy.SimulationAPI.simulations import Simulation
        SimAPI = Simulation()
        numPix = 100
        deltaPix = 0.05
        kwargs_data = SimAPI.data_configure(numPix, deltaPix, exposure_time=1, sigma_bkg=1)
        data_class = Data(kwargs_data)
        kernel = np.zeros((5, 5))
        kernel[2, 2] = 1
        kwargs_psf = {'kernel_point_source': kernel, 'kernel_pixel': kernel, 'psf_type': 'PIXEL'}
        psf_class = PSF(kwargs_psf)
        lens_model_class = LensModel(['SPEP'])
        source_model_class = LightModel([])
        lens_light_model_class = LightModel([])
        kwargs_numerics = {'subgrid_res': 2, 'point_source_subgrid': 1}
        point_source_class = PointSource(point_source_type_list=['LENSED_POSITION'], fixed_magnification_list=[False])
        makeImage = ImageModel(data_class, psf_class, lens_model_class, source_model_class, lens_light_model_class, point_source_class, kwargs_numerics=kwargs_numerics)
        # chose point source positions
        x_pix = np.array([10, 5, 10, 90])
        y_pix = np.array([40, 50, 60, 50])
        ra_pos, dec_pos = makeImage.Data.map_pix2coord(x_pix, y_pix)
        e1, e2 = param_util.phi_q2_ellipticity(0, 0.8)
        kwargs_lens_init = [{'theta_E': 1, 'gamma': 2, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0}]
        kwargs_else = [{'ra_image': ra_pos, 'dec_image': dec_pos, 'point_amp': np.ones_like(ra_pos)}]
        model = makeImage.image(kwargs_lens_init, kwargs_source={}, kwargs_lens_light={}, kwargs_ps=kwargs_else)
        image = makeImage.ImageNumerics.array2image(model)
        for i in range(len(x_pix)):
            npt.assert_almost_equal(image[y_pix[i], x_pix[i]], 1, decimal=2)

        x_pix = np.array([10.5, 5.5, 10.5, 90.5])
        y_pix = np.array([40, 50, 60, 50])
        ra_pos, dec_pos = makeImage.Data.map_pix2coord(x_pix, y_pix)
        phi, q = 0., 0.8
        e1, e2 = param_util.phi_q2_ellipticity(phi, q)
        kwargs_lens_init = [{'theta_E': 1, 'gamma': 2, 'e1': e1, 'e2': e2, 'center_x': 0, 'center_y': 0}]
        kwargs_else = [{'ra_image': ra_pos, 'dec_image': dec_pos, 'point_amp': np.ones_like(ra_pos)}]
        model = makeImage.image(kwargs_lens_init, kwargs_source={}, kwargs_lens_light={}, kwargs_ps=kwargs_else)
        image = makeImage.ImageNumerics.array2image(model)
        for i in range(len(x_pix)):
            print(int(y_pix[i]), int(x_pix[i]+0.5))
            npt.assert_almost_equal(image[int(y_pix[i]), int(x_pix[i])], 0.5, decimal=1)
            npt.assert_almost_equal(image[int(y_pix[i]), int(x_pix[i]+0.5)], 0.5, decimal=1)
class TestFittingSequence(object):
    """
    test the fitting sequences
    """
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 50  # cutout pixel size
        deltaPix = 0.1  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        self.kwargs_data = self.SimAPI.data_configure(numPix, deltaPix, exp_time, sigma_bkg)
        data_class = Data(self.kwargs_data)
        kwargs_psf = self.SimAPI.psf_configure(psf_type='GAUSSIAN', fwhm=fwhm, kernelsize=11, deltaPix=deltaPix,
                                               truncate=3,
                                               kernel=None)
        self.kwargs_psf = self.SimAPI.psf_configure(psf_type='PIXEL', fwhm=fwhm, kernelsize=11, deltaPix=deltaPix,
                                                    truncate=6,
                                                    kernel=kwargs_psf['kernel_point_source'])
        psf_class = PSF(self.kwargs_psf)

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {'e1': 0.01, 'e2': 0.01}  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {'theta_E': 1., 'gamma': 1.8, 'center_x': 0, 'center_y': 0, 'e1': 0.1, 'e2': 0.1}

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        kwargs_sersic = {'amp': 1., 'R_sersic': 0.1, 'n_sersic': 2, 'center_x': 0, 'center_y': 0}
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {'amp': 1., 'R_sersic': .6, 'n_sersic': 3, 'center_x': 0, 'center_y': 0,
                                 'e1': 0.1, 'e2': 0.1}

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [{'ra_source': 0.0, 'dec_source': 0.0,
                           'source_amp': 1.}]  # quasar point source position in the source plane and intrinsic brightness
        point_source_list = ['SOURCE_POSITION']
        point_source_class = PointSource(point_source_type_list=point_source_list, fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class, psf_class, lens_model_class, source_model_class,
                                lens_light_model_class,
                                point_source_class, kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens, self.kwargs_source,
                                         self.kwargs_lens_light, self.kwargs_ps)

        data_class.update_data(image_sim)
        self.data_class = data_class
        self.psf_class = psf_class
        self.kwargs_data['image_data'] = image_sim
        self.kwargs_model = {'lens_model_list': lens_model_list,
                               'source_light_model_list': source_model_list,
                               'lens_light_model_list': lens_light_model_list,
                               'point_source_model_list': point_source_list,
                               'fixed_magnification_list': [False],
                             }
        self.kwargs_numerics = {
                               'subgrid_res': 1,
                               'psf_subgrid': False}

        num_source_model = len(source_model_list)

        self.kwargs_constraints = {'joint_center_lens_light': False,
                              'joint_center_source_light': False,
                              'num_point_source_list': [4],
                              'additional_images_list': [False],
                              'fix_to_point_source_list': [False] * num_source_model,
                              'image_plane_source_list': [False] * num_source_model,
                              'solver': False,
                              'solver_type': 'PROFILE_SHEAR',  # 'PROFILE', 'PROFILE_SHEAR', 'ELLIPSE', 'CENTER'
                              }

        self.kwargs_likelihood = {'force_no_add_image': True,
                             'source_marg': True,
                             'point_source_likelihood': False,
                             'position_uncertainty': 0.004,
                             'check_solver': False,
                             'solver_tolerance': 0.001,
                             'check_positive_flux': True,
                             }

    def test_simulationAPI_image(self):
        npt.assert_almost_equal(self.data_class.data[4, 4], 0.1, decimal=0)

    def test_simulationAPI_psf(self):
        npt.assert_almost_equal(self.psf_class.kernel_pixel[1, 1], 0.0010335243878451812, decimal=6)

    def test_fitting_sequence(self):
        #kwargs_init = [self.kwargs_lens, self.kwargs_source, self.kwargs_lens_light, self.kwargs_ps]
        lens_sigma = [{'theta_E': 0.1, 'gamma': 0.1, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}, {'e1': 0.1, 'e2': 0.1}]
        lens_lower = [{'theta_E': 0., 'gamma': 1.5, 'center_x': -2, 'center_y': -2, 'e1': -0.4, 'e2': -0.4}, {'e1': -0.3, 'e2': -0.3}]
        lens_upper = [{'theta_E': 10., 'gamma': 2.5, 'center_x': 2, 'center_y': 2, 'e1': 0.4, 'e2': 0.4}, {'e1': 0.3, 'e2': 0.3}]
        source_sigma = [{'R_sersic': 0.05, 'n_sersic': 0.5, 'center_x': 0.1, 'center_y': 0.1, 'e1': 0.1, 'e2': 0.1}]
        source_lower = [{'R_sersic': 0.01, 'n_sersic': 0.5, 'center_x': -2, 'center_y': -2, 'e1': -0.4, 'e2': -0.4}]
        source_upper = [{'R_sersic': 10, 'n_sersic': 5.5, 'center_x': 2, 'center_y': 2, 'e1': 0.4, 'e2': 0.4}]

        lens_light_sigma = [{'R_sersic': 0.05, 'n_sersic': 0.5, 'center_x': 0.1, 'center_y': 0.1}]
        lens_light_lower = [{'R_sersic': 0.01, 'n_sersic': 0.5, 'center_x': -2, 'center_y': -2}]
        lens_light_upper = [{'R_sersic': 10, 'n_sersic': 5.5, 'center_x': 2, 'center_y': 2}]
        ps_sigma = [{'ra_source': 1, 'dec_source': 1, 'point_amp': 1}]

        lens_param = self.kwargs_lens, lens_sigma, [{}, {}], lens_lower, lens_upper
        source_param = self.kwargs_source, source_sigma, [{}], source_lower, source_upper
        lens_light_param = self.kwargs_lens_light, lens_light_sigma, [{}], lens_light_lower, lens_light_upper
        ps_param = self.kwargs_ps, ps_sigma, [{}], self.kwargs_ps, self.kwargs_ps

        kwargs_params = {'lens_model': lens_param,
                         'source_model': source_param,
                         'lens_light_model': lens_light_param,
                         'point_source_model': ps_param,
                         #'cosmography': cosmo_param
        }
        #kwargs_params = [kwargs_init, kwargs_sigma, kwargs_fixed, kwargs_init, kwargs_init]
        image_band = [self.kwargs_data, self.kwargs_psf, self.kwargs_numerics]
        multi_band_list = [image_band]
        fittingSequence = FittingSequence(multi_band_list, self.kwargs_model, self.kwargs_constraints, self.kwargs_likelihood, kwargs_params)

        lens_temp, source_temp, lens_light_temp, else_temp, cosmo_temp, chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fittingSequence.fit_sequence(fitting_kwargs_list=[])
        npt.assert_almost_equal(lens_temp[0]['theta_E'], self.kwargs_lens[0]['theta_E'], decimal=2)

        n_p = 2
        n_i = 2
        
        fitting_kwargs_list = [
            {'fitting_routine': 'PSO', 'sigma_scale': 1, 'n_particles': n_p, 'n_iterations': n_i},
            {'fitting_routine': 'MCMC', 'sigma_scale': 0.1, 'n_burn': 1, 'n_run': 1, 'walkerRatio': 2},
            {'fitting_routine': 'align_images', 'lower_limit_shift': -0.1, 'upper_limit_shift': 0.1, 'n_particles': 2, 'n_iterations': 2},
            {'fitting_routine': 'psf_iteration', 'psf_iter_num': 2, 'psf_iter_factor': 0.5, 'kwargs_psf_iter': {'stacking_option': 'mean'}}
        ]
        lens_temp, source_temp, lens_light_temp, else_temp, cosmo_temp, chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fittingSequence.fit_sequence(fitting_kwargs_list=fitting_kwargs_list)
        npt.assert_almost_equal(lens_temp[0]['theta_E'], self.kwargs_lens[0]['theta_E'], decimal=1)
Пример #14
0
# the psf_example.fits file can be found here:
# https://github.com/sibirrer/lenstronomy_extensions/tree/master/Data/PSF_TinyTim
# and imported from a local file path as well
# data specifics
background_rms = 0.1  #  background noise per pixel (Gaussian)
exp_time = 100.  #  exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
numPix = 21  #  cutout pixel size
deltaPix = 1  #  pixel size in arcsec (area per pixel = deltaPix**2)
fwhm = 2.5  # full width half max of PSF (only valid when psf_type='gaussian')
psf_type = 'GAUSSIAN'  # 'gaussian', 'pixel', 'NONE'
kernel_size = 21

# initial input simulation

# generate the coordinate grid and image properties
data_class = SimAPI.data_configure(numPix, deltaPix, exp_time, background_rms)
# generate the psf variables
psf_class = SimAPI.psf_configure(psf_type=psf_type,
                                 fwhm=fwhm,
                                 kernelsize=kernel_size,
                                 deltaPix=deltaPix,
                                 kernel=None)

# quasar center (we chose a off-centered position)
center_x = 0.07
center_y = 0.01

# quasar brightness (as measured as the sum of pixel values)
point_amp = 1
from lenstronomy.PointSource.point_source import PointSource
point_source_list = ['UNLENSED']
Пример #15
0
class TestSimulation(object):
    def setup(self):
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 1.  # background noise per pixel
        exp_time = 10  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 100  # cutout pixel size
        deltaPix = 0.05  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        data_class = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                sigma_bkg)
        self.kwargs_data = data_class.constructor_kwargs()
        psf_class = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                              fwhm=fwhm,
                                              kernelsize=31,
                                              deltaPix=deltaPix,
                                              truncate=5)
        self.kwargs_psf = psf_class.constructor_kwargs()

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        self.kwargs_lens = [kwargs_spemd, kwargs_shear]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        point_source_class = PointSource(
            point_source_type_list=['SOURCE_POSITION'],
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 2, 'psf_subgrid': True}
        self.imageModel = ImageModel(data_class,
                                     psf_class,
                                     lens_model_class,
                                     source_model_class,
                                     lens_light_model_class,
                                     point_source_class,
                                     kwargs_numerics=kwargs_numerics)

    def test_im_sim(self):
        # model specifics

        # list of lens models, supports:

        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]
        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        kwargs_lens_light_list = [kwargs_sersic]
        kwargs_source_list = [kwargs_sersic_ellipse]
        kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        image_sim = self.SimAPI.simulate(self.imageModel, kwargs_lens_list,
                                         kwargs_source_list,
                                         kwargs_lens_light_list, kwargs_ps)

        assert len(image_sim) == 100
        npt.assert_almost_equal(np.sum(image_sim),
                                24476.280571230454,
                                decimal=-3)

    def test_normalize_flux(self):
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]

        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }
        lens_light_model_list = ['SERSIC']
        kwargs_lens_light_list = [kwargs_sersic]
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source_list = [kwargs_sersic_ellipse]

        kwargs_ps = [
            {
                'ra_source': 0.0,
                'dec_source': 0.0,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness

        kwargs_options = {
            'lens_model_list': lens_model_list,
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'PIXEL',
            'point_source_list': ['SOURCE_POSITION'],
            'fixed_magnification': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_ps
        }
        #image_sim = self.SimAPI.simulate(self.imageModel, kwargs_lens_list, kwargs_source_list,
        #                          kwargs_lens_light_list, kwargs_ps)
        kwargs_source_updated, kwargs_lens_light_updated, kwargs_else_updated = self.SimAPI.normalize_flux(
            kwargs_options,
            kwargs_source_list,
            kwargs_lens_light_list,
            kwargs_ps,
            norm_factor_source=3,
            norm_factor_lens_light=2,
            norm_factor_point_source=0.)
        print(kwargs_else_updated, 'test')
        assert kwargs_else_updated[0]['source_amp'] == 0

    def test_normalize_flux_source(self):
        # 'EXERNAL_SHEAR': external shear
        kwargs_shear = {
            'e1': 0.01,
            'e2': 0.01
        }  # gamma_ext: shear strength, psi_ext: shear angel (in radian)
        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.8,
            'center_x': 0,
            'center_y': 0,
            'q': 0.8,
            'phi_G': 0.2
        }

        lens_model_list = ['SPEP', 'SHEAR']
        kwargs_lens_list = [kwargs_spemd, kwargs_shear]

        # list of light profiles (for lens and source)
        # 'SERSIC': spherical Sersic profile
        kwargs_sersic = {
            'I0_sersic': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        kwargs_lens_light_list = [kwargs_sersic]
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source_list = [kwargs_sersic_ellipse]
        kwargs_options = {
            'lens_model_list': lens_model_list,
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'PIXEL',
            'point_source': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_else
        }
        kwargs_source_updated = self.SimAPI.normalize_flux_source(
            kwargs_options, kwargs_source_list, norm_factor_source=10)
        assert kwargs_source_updated[0][
            'I0_sersic'] == kwargs_source_list[0]['I0_sersic'] * 10

    def test_source_plane(self):
        numPix = 10
        deltaPix = 0.1
        kwargs_sersic_ellipse = {
            'I0_sersic': 1.,
            'R_sersic': .6,
            'n_sersic': 7,
            'center_x': 0,
            'center_y': 0,
            'phi_G': 0.2,
            'q': 0.9
        }

        lens_light_model_list = ['SERSIC']
        source_model_list = ['SERSIC_ELLIPSE']
        kwargs_source = [kwargs_sersic_ellipse]
        kwargs_options = {
            'lens_light_model_list': lens_light_model_list,
            'source_light_model_list': source_model_list,
            'psf_type': 'pixel',
            'point_source': True
            # if True, simulates point source at source position of 'sourcePos_xy' in kwargs_else
        }
        source = self.SimAPI.source_plane(kwargs_options, kwargs_source,
                                          numPix, deltaPix)
        assert len(source) == numPix

    def test_shift_coordinate_grid(self):
        x_shift = 0.05
        y_shift = 0
        kwargs_data_shifted = self.SimAPI.shift_coordinate_grid(
            self.kwargs_data, x_shift, y_shift, pixel_units=False)
        kwargs_data_new = copy.deepcopy(self.kwargs_data)
        kwargs_data_new['ra_shift'] = x_shift
        kwargs_data_new['dec_shift'] = y_shift
        data = Data(kwargs_data=kwargs_data_shifted)
        data_new = Data(kwargs_data=kwargs_data_new)
        ra, dec = 0, 0
        x, y = data.map_coord2pix(ra, dec)
        x_new, y_new = data_new.map_coord2pix(ra, dec)
        npt.assert_almost_equal(x, x_new, decimal=10)
        npt.assert_almost_equal(y, y_new, decimal=10)

        ra, dec = data.map_pix2coord(x, y)
        ra_new, dec_new = data_new.map_pix2coord(x, y)
        npt.assert_almost_equal(ra, ra_new, decimal=10)
        npt.assert_almost_equal(dec, dec_new, decimal=10)

        x_coords, y_coords = data.coordinates
        x_coords_new, y_coords_new = data_new.coordinates
        npt.assert_almost_equal(x_coords[0], x_coords_new[0], decimal=10)
        npt.assert_almost_equal(y_coords[0], y_coords_new[0], decimal=10)
Пример #16
0
class TestFittingSequence(object):
    """
    test the fitting sequences
    """
    def setup(self):
        np.random.seed(42)
        self.SimAPI = Simulation()

        # data specifics
        sigma_bkg = 0.05  # background noise per pixel
        exp_time = 100  # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit)
        numPix = 50  # cutout pixel size
        deltaPix = 0.1  # pixel size in arcsec (area per pixel = deltaPix**2)
        fwhm = 0.5  # full width half max of PSF

        # PSF specification

        kwargs_data = self.SimAPI.data_configure(numPix, deltaPix, exp_time,
                                                 sigma_bkg)
        data_class = Data(kwargs_data)
        kwargs_psf = self.SimAPI.psf_configure(psf_type='GAUSSIAN',
                                               fwhm=fwhm,
                                               kernelsize=11,
                                               deltaPix=deltaPix,
                                               truncate=3,
                                               kernel=None)
        psf_class = PSF(kwargs_psf)

        kwargs_spemd = {
            'theta_E': 1.,
            'gamma': 1.95,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }

        lens_model_list = ['SPEP']
        self.kwargs_lens = [kwargs_spemd]
        lens_model_class = LensModel(lens_model_list=lens_model_list)
        kwargs_sersic = {
            'amp': 1.,
            'R_sersic': 0.1,
            'n_sersic': 2,
            'center_x': 0,
            'center_y': 0
        }
        # 'SERSIC_ELLIPSE': elliptical Sersic profile
        kwargs_sersic_ellipse = {
            'amp': 1.,
            'R_sersic': .6,
            'n_sersic': 3,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }

        lens_light_model_list = ['SERSIC']
        self.kwargs_lens_light = [kwargs_sersic]
        lens_light_model_class = LightModel(
            light_model_list=lens_light_model_list)
        source_model_list = ['SERSIC_ELLIPSE']
        self.kwargs_source = [kwargs_sersic_ellipse]
        source_model_class = LightModel(light_model_list=source_model_list)
        self.kwargs_ps = [
            {
                'ra_source': 0.55,
                'dec_source': 0.02,
                'source_amp': 1.
            }
        ]  # quasar point source position in the source plane and intrinsic brightness
        self.kwargs_cosmo = {'D_dt': 1000}
        point_source_list = ['SOURCE_POSITION']
        point_source_class = PointSource(
            point_source_type_list=point_source_list,
            fixed_magnification_list=[True])
        kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}
        imageModel = ImageModel(data_class,
                                psf_class,
                                lens_model_class,
                                source_model_class,
                                lens_light_model_class,
                                point_source_class,
                                kwargs_numerics=kwargs_numerics)
        image_sim = self.SimAPI.simulate(imageModel, self.kwargs_lens,
                                         self.kwargs_source,
                                         self.kwargs_lens_light,
                                         self.kwargs_ps)

        data_class.update_data(image_sim)
        self.data_class = data_class
        self.psf_class = psf_class

        kwargs_model = {
            'lens_model_list': lens_model_list,
            'source_light_model_list': source_model_list,
            'lens_light_model_list': lens_light_model_list,
            'point_source_model_list': point_source_list,
            'cosmo_type': 'D_dt'
        }

        self.kwargs_numerics = {'subgrid_res': 1, 'psf_subgrid': False}

        kwargs_constraints = {
            'num_point_source_list': [4],
            'additional_images_list': [True],
            'solver': False,
            'solver_type':
            'PROFILE_SHEAR',  # 'PROFILE', 'PROFILE_SHEAR', 'ELLIPSE', 'CENTER'
        }

        kwargs_likelihood = {
            'force_no_add_image': True,
            'source_marg': True,
            'point_source_likelihood': True,
            'position_uncertainty': 0.004,
            'check_solver': True,
            'solver_tolerance': 0.001,
            'check_positive_flux': True,
        }
        self.param_class = Param(kwargs_model, kwargs_constraints)
        self.imageModel = ImageModel(data_class,
                                     psf_class,
                                     lens_model_class,
                                     source_model_class,
                                     lens_light_model_class,
                                     point_source_class,
                                     kwargs_numerics=kwargs_numerics)
        self.Likelihood = LikelihoodModule(imSim_class=self.imageModel,
                                           param_class=self.param_class,
                                           kwargs_likelihood=kwargs_likelihood)

    def test_logL(self):
        args = self.param_class.setParams(
            kwargs_lens=self.kwargs_lens,
            kwargs_source=self.kwargs_source,
            kwargs_lens_light=self.kwargs_lens_light,
            kwargs_ps=self.kwargs_ps,
            kwargs_cosmo=self.kwargs_cosmo)

        logL, _ = self.Likelihood.logL(args)
        num_data_evaluate = self.Likelihood.imSim.numData_evaluate()
        npt.assert_almost_equal(logL / num_data_evaluate, -1 / 2., decimal=1)

    def test_time_delay_likelihood(self):
        kwargs_likelihood = {
            'time_delay_likelihood': True,
            'time_delays_measured': np.ones(4),
            'time_delays_uncertainties': np.ones(4)
        }
        likelihood = LikelihoodModule(imSim_class=self.imageModel,
                                      param_class=self.param_class,
                                      kwargs_likelihood=kwargs_likelihood)
        args = self.param_class.setParams(
            kwargs_lens=self.kwargs_lens,
            kwargs_source=self.kwargs_source,
            kwargs_lens_light=self.kwargs_lens_light,
            kwargs_ps=self.kwargs_ps,
            kwargs_cosmo=self.kwargs_cosmo)

        logL, _ = likelihood.logL(args)
        npt.assert_almost_equal(logL, -3313.79, decimal=-1)

    def test_solver(self):
        # make simulation with point source positions in image plane
        x_pos, y_pos = self.imageModel.PointSource.image_position(
            self.kwargs_ps, self.kwargs_lens)
        kwargs_ps = [{'ra_image': x_pos[0], 'dec_image': y_pos[0]}]

        kwargs_likelihood = {
            'source_marg': True,
            'point_source_likelihood': True,
            'position_uncertainty': 0.004,
            'check_solver': True,
            'solver_tolerance': 0.001,
            'check_positive_flux': True,
            'solver': True
        }