Пример #1
0
 def test_d_r_dy(self):
     x = 1
     y = 0
     out = calc_util.d_r_dy(x, y)
     assert out == 0
     x, y = util.make_grid(numPix=10, deltapix=0.1)
     dy = 0.000001
     out = calc_util.d_r_dy(x, y)
     r, phi = param_util.cart2polar(x, y)
     r_dy, phi_dy = param_util.cart2polar(x, y + dy)
     dr_dy = (r_dy - r) / dy
     npt.assert_almost_equal(dr_dy, out, decimal=5)
Пример #2
0
 def test_d_r_dx(self):
     x = 1
     y = 0
     out = calc_util.d_r_dx(x, y)
     assert out == 1
     x, y = util.make_grid(numPix=10, deltapix=0.1)
     dx = 0.000001
     out = calc_util.d_r_dx(x, y)
     r, phi = param_util.cart2polar(x, y)
     r_dx, phi_dx = param_util.cart2polar(x + dx, y)
     dr_dx = (r_dx - r) / dx
     npt.assert_almost_equal(dr_dx, out, decimal=5)
Пример #3
0
    def test_d_phi_dx(self):
        x, y = np.array([1., 0., -1.]), np.array([1., 1., -1.])
        dx, dy = 0.0001, 0.0001
        r, phi = param_util.cart2polar(x, y, center_x=0, center_y=0)

        d_phi_dx = calc_util.d_phi_dx(x, y)
        d_phi_dy = calc_util.d_phi_dy(x, y)
        r_dx, phi_dx = param_util.cart2polar(x + dx, y, center_x=0, center_y=0)
        r_dy, phi_dy = param_util.cart2polar(x, y + dy, center_x=0, center_y=0)
        d_phi_dx_num = (phi_dx - phi) / dx
        d_phi_dy_num = (phi_dy - phi) / dy
        npt.assert_almost_equal(d_phi_dx, d_phi_dx_num, decimal=4)
        npt.assert_almost_equal(d_phi_dy, d_phi_dy_num, decimal=4)
Пример #4
0
def test_cart2polar():
    #singel 2d coordinate transformation
    center_x, center_y = 0, 0
    x = 1
    y = 1
    r, phi = param_util.cart2polar(x, y, center_x, center_y)
    assert r == np.sqrt(2)  #radial part
    assert phi == np.arctan(1)
    #array of 2d coordinates
    x = np.array([1, 2])
    y = np.array([1, 1])

    r, phi = param_util.cart2polar(x, y, center_x, center_y)
    assert r[0] == np.sqrt(2)  #radial part
    assert phi[0] == np.arctan(1)
Пример #5
0
    def derivatives(self, x, y, coeff, d_r, d_phi, center_x, center_y):
        """

        :param x: x-coordinate
        :param y: y-coordinate
        :param coeff: float, amplitude of basis
        :param d_r: period of radial sinusoidal in units of angle
        :param d_phi: period of tangential sinusoidal in radian
        :param center_x: center of rotation for tangential basis
        :param center_y: center of rotation for tangential basis
        :return: f_x, f_y
        """
        r, theta = param_util.cart2polar(x,
                                         y,
                                         center_x=center_x,
                                         center_y=center_y)
        dphi_ = d_phi / self._2_pi
        d_phi_dr = self._d_phi_r(r, d_r) * self._phi_theta(theta, dphi_)
        d_phi_d_theta = self._d_phi_theta(theta, dphi_) * self._phi_r(r, d_r)
        x_ = x - center_x
        y_ = y - center_y
        dr_dx = derivative_util.d_r_dx(x_, y_)
        dr_dy = derivative_util.d_r_dy(x_, y_)
        d_theta_dx = derivative_util.d_phi_dx(x_, y_)
        d_theta_dy = derivative_util.d_phi_dy(x_, y_)
        f_x = d_phi_dr * dr_dx + d_phi_d_theta * d_theta_dx
        f_y = d_phi_dr * dr_dy + d_phi_d_theta * d_theta_dy
        return f_x * coeff, f_y * coeff
Пример #6
0
 def function(self, x, y, coeffs, beta, center_x=0, center_y=0):
     shapelets = self._createShapelet(coeffs)
     r, phi = param_util.cart2polar(x,
                                    y,
                                    center=np.array([center_x, center_y]))
     f_ = self._shapeletOutput(r, phi, beta, shapelets)
     return f_
    def alpha_ext(self, x, y, kwargs_slice):
        """
        deflection angle for (x,y) outside the elliptical slice

        :param kwargs_slice: dict, dictionary with  the slice definition (a,b,psi,sigma_0)

        """
        z = complex(x, y)
        r, phi = param_util.cart2polar(x, y)
        zb = z.conjugate()
        psi = kwargs_slice['psi']
        a = kwargs_slice['a']
        b = kwargs_slice['b']
        f2 = a**2 - b**2
        sig_0 = kwargs_slice['sigma_0']
        median_op = False
        # when (x,y) is on one of the ellipse axis, there might be an issue when calculating the square root of
        # zb ** 2 * e2ipsi - f2. When the argument has an imaginary part ==0, having 0. or -0. may return different
        # answers. Therefore, for points (x,y) close to one axis, we take 3 points (one is x,y ; another one is a delta
        # away from this position, perpendicularly to the axis ; another one is at -delta perpendicularly away from
        # x,y). We calculate the function for each point and take the median. This avoids any singularity for points
        # along the axis but it slows down the function.
        if np.abs(np.sin(phi - psi)) <= 10 ** -10 \
                or np.abs(np.sin(phi - psi - np.pi / 2.)) <= 10 ** -10:  # very close to one of the ellipse axis
            median_op = True
        e2ipsi = c.exp(2j * psi)
        eipsi = c.exp(1j * psi)
        if median_op is True:
            eps = 10**-10
            z_minus_eps = complex(r * np.cos(phi - eps), r * np.sin(phi - eps))
            zb_minus_eps = z_minus_eps.conjugate()
            z_plus_eps = complex(r * np.cos(phi + eps), r * np.sin(phi + eps))
            zb_plus_eps = z_plus_eps.conjugate()
            I_out_minus = 2 * a * b / f2 * (
                zb_minus_eps * e2ipsi - eipsi * self.sign(zb_minus_eps * eipsi)
                * c.sqrt(zb_minus_eps**2 * e2ipsi - f2)) * sig_0
            I_out_plus = 2 * a * b / f2 * (
                zb_plus_eps * e2ipsi - eipsi * self.sign(zb_plus_eps * eipsi) *
                c.sqrt(zb_plus_eps**2 * e2ipsi - f2)) * sig_0
            I_out_mid = 2 * a * b / f2 * (zb * e2ipsi - eipsi * self.sign(
                zb * eipsi) * c.sqrt(zb**2 * e2ipsi - f2)) * sig_0
            I_out_real = np.median(
                [I_out_minus.real, I_out_plus.real, I_out_mid.real])
            I_out_imag = np.median(
                [I_out_minus.imag, I_out_plus.imag, I_out_mid.imag])
        else:
            I_out = 2 * a * b / f2 * (zb * e2ipsi - eipsi * self.sign(
                zb * eipsi) * c.sqrt(zb**2 * e2ipsi - f2)) * sig_0
            I_out_real = I_out.real
            I_out_imag = I_out.imag

        # buf = zb ** 2 * e2ipsi - f2  ##problem with 0. and -0. giving different answers
        # if buf.real == 0:
        #     buf = complex(0, buf.imag)
        # if buf.imag == 0:
        #     buf = complex(buf.real, 0)

        return I_out_real, I_out_imag
Пример #8
0
 def function(self, x, y, e1, e2, ra_0=0, dec_0=0):
     # change to polar coordinates
     psi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)
     r, phi = param_util.cart2polar(x - ra_0, y - dec_0)
     f_ = 1. / 2 * gamma_ext * r**2 * np.cos(2 * (phi - psi_ext))
     #x_ = x - ra_0
     #y_ = y - dec_0
     #f_ = 1/2. * (e1 * x_ * x_ + 2 * e2 * x_ * y_ - e1 * y_ * y_)
     return f_
Пример #9
0
 def derivatives(self, x, y, coeffs, beta, center_x=0, center_y=0):
     """
     returns df/dx and df/dy of the function
     """
     shapelets = self._createShapelet(coeffs)
     r, phi = param_util.cart2polar(x, y, center_x=center_x, center_y=center_y)
     alpha1_shapelets, alpha2_shapelets = self._alphaShapelets(shapelets, beta)
     f_x = self._shapeletOutput(r, phi, beta, alpha1_shapelets)
     f_y = self._shapeletOutput(r, phi, beta, alpha2_shapelets)
     return f_x, f_y
Пример #10
0
    def _param_penalties(self, lens_args_tovary):

        penalty = 0

        for pname in self.params_to_constrain.keys():

            if pname == 'shear':

                index1 = self.param_class.routine.params_to_vary.index(
                    'shear_e1')
                index2 = self.param_class.routine.params_to_vary.index(
                    'shear_e2')
                shear, _ = cart2polar(lens_args_tovary[index1],
                                      lens_args_tovary[index2])

                penalty += 0.5 * (
                    (shear - self.params_to_constrain['shear'][0]) *
                    self.params_to_constrain['shear'][1]**-1)**2

            elif pname == 'shear_pa':

                index1 = self.param_class.routine.params_to_vary.index(
                    'shear_e1')
                index2 = self.param_class.routine.params_to_vary.index(
                    'shear_e2')
                _, shear_pa = cart2polar(lens_args_tovary[index1],
                                         lens_args_tovary[index2])

                penalty += 0.5 * (
                    (shear_pa - self.params_to_constrain['shear_pa'][0]) *
                    self.params_to_constrain['shear_pa'][1]**-1)**2

            else:

                index = self.param_class.routine.params_to_vary.index(pname)
                value = lens_args_tovary[index]
                target = self.params_to_constrain[pname][0]
                sigma = self.params_to_constrain[pname][1]

                penalty += 0.5 * ((value - target) * sigma**-1)**2

        return penalty
Пример #11
0
    def function(self, x, y, kappa_ext, ra_0=0, dec_0=0):
        """
        lensing potential

        :param x: x-coordinate
        :param y: y-coordinate
        :param kappa_ext: external convergence
        :return: lensing potential
        """
        theta, phi = param_util.cart2polar(x - ra_0, y - dec_0)
        f_ = 1./2 * kappa_ext * theta**2
        return f_
Пример #12
0
    def pot_ext(self, x, y, kwargs_slice):
        """
        lensing potential for (x,y) outside the elliptical slice

        :param kwargs_slice: dict, dictionary with  the slice definition (a,b,psi,sigma_0)

        """
        z = complex(x, y)
        # zb = z.conjugate()
        psi = kwargs_slice['psi']
        a = kwargs_slice['a']
        b = kwargs_slice['b']
        sig_0 = kwargs_slice['sigma_0']
        r, phi = param_util.cart2polar(x, y)
        median_op = False
        # when (x,y) is on one of the ellipse axis, there might be an issue when calculating the square root of
        # z ** 2 * em2ipsi - f2. When the argument has an imaginary part ==0, having 0. or -0. may return different
        # answers. Therefore, for points (x,y) close to one axis, we take 3 points (one is x,y ; another one is a delta
        # away from this position, perpendicularly to the axis ; another one is at -delta perpendicularly away from
        # x,y). We calculate the function for each point and take the median. This avoids any singularity for points
        # along the axis but it slows down the function.
        if np.abs(np.sin(phi - psi)) <= 10 ** -10 \
                or np.abs(np.sin(phi - psi - np.pi / 2.)) <= 10 ** -10:  # very close to one of the ellipse axis
            median_op = True
        e = (a - b) / (a + b)
        f2 = a ** 2 - b ** 2
        emipsi = c.exp(-1j * psi)
        em2ipsi = c.exp(-2j * psi)
        if median_op is True:
            eps = 10 ** -10
            z_minus_eps = complex(r * np.cos(phi - eps), r * np.sin(phi - eps))
            z_plus_eps = complex(r * np.cos(phi + eps), r * np.sin(phi + eps))

            pot_ext_minus = (1 - e ** 2) / (4 * e) * (f2 * c.log(
                (self.sign(z_minus_eps * emipsi) * z_minus_eps * emipsi + c.sqrt(z_minus_eps ** 2 * em2ipsi - f2)) / 2.)
                                                      - self.sign(z_minus_eps * emipsi) * z_minus_eps * emipsi * c.sqrt(
                        z_minus_eps ** 2 * em2ipsi - f2) + z_minus_eps ** 2 * em2ipsi) * sig_0
            pot_ext_plus = (1 - e ** 2) / (4 * e) * (f2 * c.log(
                (self.sign(z_plus_eps * emipsi) * z_plus_eps * emipsi + c.sqrt(z_plus_eps ** 2 * em2ipsi - f2)) / 2.)
                                                     - self.sign(z_plus_eps * emipsi) * z_plus_eps * emipsi * c.sqrt(
                        z_plus_eps ** 2 * em2ipsi - f2) + z_plus_eps ** 2 * em2ipsi) * sig_0
            pot_ext_mid = (1 - e ** 2) / (4 * e) * (
                        f2 * c.log((self.sign(z * emipsi) * z * emipsi + c.sqrt(z ** 2 * em2ipsi - f2)) / 2.)
                        - self.sign(z * emipsi) * z * emipsi * c.sqrt(z ** 2 * em2ipsi - f2) + z ** 2 * em2ipsi) * sig_0
            pot_ext = np.median([pot_ext_minus.real, pot_ext_plus.real, pot_ext_mid.real])
        else:
            pot_ext = ((1 - e ** 2) / (4 * e) * (
                        f2 * c.log((self.sign(z * emipsi) * z * emipsi + c.sqrt(z ** 2 * em2ipsi - f2)) / 2.)
                        - self.sign(z * emipsi) * z * emipsi *
                        c.sqrt(z ** 2 * em2ipsi - f2) + z ** 2 * em2ipsi) * sig_0).real
        return pot_ext
Пример #13
0
    def function(x, y, gamma_ext, psi_ext, ra_0=0, dec_0=0):
        """

        :param x: x-coordinate (angle)
        :param y: y0-coordinate (angle)
        :param gamma_ext: shear strength
        :param psi_ext: shear angle (radian)
        :param ra_0: x/ra position where shear deflection is 0
        :param dec_0: y/dec position where shear deflection is 0
        :return:
        """
        # change to polar coordinate
        r, phi = param_util.cart2polar(x - ra_0, y - dec_0)
        f_ = 1. / 2 * gamma_ext * r**2 * np.cos(2 * (phi - psi_ext))
        return f_
Пример #14
0
    def function(self, x, y, m, a_m, phi_m, center_x=0, center_y=0):
        """
        Lensing potential of multipole contribution (for 1 component with m>=2)
        This uses the same definitions as Xu et al.(2013) in Appendix B3 https://arxiv.org/pdf/1307.4220.pdf

        :param m: int, multipole order, m>=2
        :param a_m: float, multipole strength
        :param phi_m: float, multipole orientation in radian
        :param center_x: x-position
        :param center_y: x-position
        :return: lensing potential
        """
        r, phi = param_util.cart2polar(x, y, center_x=center_x, center_y=center_y)
        f_ = r*a_m /(1-m**2) * np.cos(m*(phi-phi_m))
        return f_
Пример #15
0
        def _dlambda_t_dt_analytic(x, y, theta_E, gamma, q, phi_G):
            # polar coordinates with respect to x-axis
            r, phi = param_util.cart2polar(x, y, center_x=0, center_y=0)
            epsilon = (1 - q**2) / (1 + q**2)

            # radial component in respect to rotation of deflector
            r_ = r * np.sqrt(1 - epsilon * np.cos(2 * (phi - phi_G)))
            # equivalent  Einstein radius for elliptical mass definition
            theta_E_prim = np.sqrt(2 * q / (1 + q**2)) * theta_E
            dlambda_t_dr = _dlambda_t_dr_analytic(r_, theta_E_prim, gamma)
            dr_de_t = epsilon * np.sin(
                2 *
                (phi - phi_G)) / np.sqrt(1 - epsilon * np.cos(2 *
                                                              (phi - phi_G)))
            return dlambda_t_dr * dr_de_t, dlambda_t_dr
Пример #16
0
 def hessian(self, x, y, coeffs, beta, center_x=0, center_y=0):
     """
     returns Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2
     """
     shapelets = self._createShapelet(coeffs)
     r, phi = param_util.cart2polar(x, y, center_x=center_x, center_y=center_y)
     kappa_shapelets=self._kappaShapelets(shapelets, beta)
     gamma1_shapelets, gamma2_shapelets=self._gammaShapelets(shapelets, beta)
     kappa_value=self._shapeletOutput(r, phi, beta, kappa_shapelets)
     gamma1_value=self._shapeletOutput(r, phi, beta, gamma1_shapelets)
     gamma2_value=self._shapeletOutput(r, phi, beta, gamma2_shapelets)
     f_xx = kappa_value + gamma1_value
     f_xy = gamma2_value
     f_yy = kappa_value - gamma1_value
     return f_xx, f_xy, f_xy, f_yy
Пример #17
0
    def derivatives(self,x,y, m, a_m, phi_m, center_x=0, center_y=0):
        """
        Deflection of a multipole contribution (for 1 component with m>=2)
        This uses the same definitions as Xu et al.(2013) in Appendix B3 https://arxiv.org/pdf/1307.4220.pdf

        :param m: int, multipole order, m>=2
        :param a_m: float, multipole strength
        :param phi_m: float, multipole orientation in radian
        :param center_x: x-position
        :param center_y: x-position
        :return: deflection angles alpha_x, alpha_y
        """
        r, phi = param_util.cart2polar(x, y, center_x=center_x, center_y=center_y)
        f_x = np.cos(phi)*a_m/(1-m**2) * np.cos(m*(phi-phi_m)) + np.sin(phi)*m*a_m/(1-m**2)*np.sin(m*(phi-phi_m))
        f_y = np.sin(phi)*a_m/(1-m**2) * np.cos(m*(phi-phi_m)) - np.cos(phi)*m*a_m/(1-m**2)*np.sin(m*(phi-phi_m))
        return f_x, f_y
Пример #18
0
    def hessian(self, x, y, m, a_m, phi_m, center_x=0, center_y=0):
        """
        Hessian of a multipole contribution (for 1 component with m>=2)
        This uses the same definitions as Xu et al.(2013) in Appendix B3 https://arxiv.org/pdf/1307.4220.pdf

        :param m: int, multipole order, m>=2
        :param a_m: float, multipole strength
        :param phi_m: float, multipole orientation in radian
        :param center_x: x-position
        :param center_y: x-position
        :return: f_xx, f_xy, f_yx, f_yy
        """
        r, phi = param_util.cart2polar(x, y, center_x=center_x, center_y=center_y)
        r = np.maximum(r, 0.000001)
        f_xx = 1./r * np.sin(phi)**2 * a_m *np.cos(m*(phi-phi_m))
        f_yy = 1./r * np.cos(phi)**2 * a_m *np.cos(m*(phi-phi_m))
        f_xy = -1./r * a_m * np.cos(phi) * np.sin(phi) * np.cos(m*(phi-phi_m))
        return f_xx, f_xy, f_xy, f_yy
Пример #19
0
    def function(self, x, y, amp, beta, n, m, complex_bool, center_x, center_y):
        """

        :param x: x-coordinate, numpy array
        :param y: y-ccordinate, numpy array
        :param amp: amplitude normalization
        :param beta: shaplet scale
        :param n: order of polynomial
        :param m: roational invariance
        :param center_x: center of shapelet
        :param center_y: center of shapelet
        :return: amplitude of shapelet at possition (x, y)
        """
        r, phi = param_util.cart2polar(x, y, center_x, center_y)
        if complex_bool is True:
            return amp * self._chi_n_m(r, beta, n, m) * np.exp(-1j * m * phi).imag
        else:
            return amp * self._chi_n_m(r, beta, n, m) * np.exp(-1j * m * phi).real
Пример #20
0
    def _pre_calc(self, x, y, beta, n_max, center_x, center_y):
        """

        :param x:
        :param y:
        :param beta:
        :param n_max:
        :param center_x:
        :param center_y:
        :return:
        """
        L_list = []
        # polar coordinates
        r, phi = param_util.cart2polar(x,
                                       y,
                                       center=np.array([center_x, center_y]))
        num_param = self.shapelets.num_param(n_max)

        # compute real and imaginary part of the complex angles in the range n_max
        theta_m_real_list, theta_m_imag_list = [], []
        for i in range(n_max + 1):
            m = i
            exp_complex = np.exp(-1j * m * phi)
            theta_m_real_list.append(exp_complex.real)
            theta_m_imag_list.append(exp_complex.imag)

        # compute the Laguerre polynomials in n, m
        chi_n_m_list = [[0 for x in range(n_max + 1)]
                        for y in range(n_max + 1)]
        for n in range(n_max + 1):
            for m in range(n + 1):
                if (n - m) % 2 == 0 or self._exponential is True:
                    chi_n_m_list[n][m] = self.shapelets._chi_n_m(r, beta, n, m)

        # combine together the pre-computed components
        for index in range(num_param):
            n, m, complex_bool = self.shapelets.index2poly(index)
            if complex_bool is True:
                L_i = chi_n_m_list[n][m] * theta_m_imag_list[m]
            else:
                L_i = chi_n_m_list[n][m] * theta_m_real_list[m]
            L_list.append(L_i)
        return L_list
Пример #21
0
    def function(self, x, y, coeff, d_r, d_phi, center_x, center_y):
        """

        :param x: x-coordinate
        :param y: y-coordinate
        :param coeff: float, amplitude of basis
        :param d_r: period of radial sinusoidal in units of angle
        :param d_phi: period of tangential sinusoidal in radian
        :param center_x: center of rotation for tangential basis
        :param center_y: center of rotation for tangential basis
        :return:
        """
        r, phi = param_util.cart2polar(x,
                                       y,
                                       center_x=center_x,
                                       center_y=center_y)
        dphi_ = d_phi / self._2_pi
        phi_r = self._phi_r(r, d_r)
        phi_theta = self._phi_theta(phi, dphi_)
        return phi_r * phi_theta * coeff
Пример #22
0
    def hessian(self, x, y, coeff, d_r, d_phi, center_x, center_y):
        """

        :param x: x-coordinate
        :param y: y-coordinate
        :param coeff: float, amplitude of basis
        :param d_r: period of radial sinusoidal in units of angle
        :param d_phi: period of tangential sinusoidal in radian
        :param center_x: center of rotation for tangential basis
        :param center_y: center of rotation for tangential basis
        :return: f_xx, f_yy, f_xy
        """
        r, theta = param_util.cart2polar(x,
                                         y,
                                         center_x=center_x,
                                         center_y=center_y)
        dphi_ = d_phi / self._2_pi

        d_phi_dr = self._d_phi_r(r, d_r) * self._phi_theta(theta, dphi_)
        d_phi_dr2 = self._d_phi_r2(r, d_r) * self._phi_theta(theta, dphi_)
        d_phi_d_theta = self._d_phi_theta(theta, dphi_) * self._phi_r(r, d_r)
        d_phi_d_theta2 = self._d_phi_theta2(theta, dphi_) * self._phi_r(r, d_r)
        d_phi_dr_dtheta = self._d_phi_r(r, d_r) * self._d_phi_theta(
            theta, dphi_)
        x_ = x - center_x
        y_ = y - center_y
        dr_dx = derivative_util.d_r_dx(x_, y_)
        dr_dy = derivative_util.d_r_dy(x_, y_)
        d_theta_dx = derivative_util.d_phi_dx(x_, y_)
        d_theta_dy = derivative_util.d_phi_dy(x_, y_)
        dr_dxx = derivative_util.d_x_diffr_dx(x_, y_)
        dr_dxy = derivative_util.d_x_diffr_dy(x_, y_)
        dr_dyy = derivative_util.d_y_diffr_dy(x_, y_)
        d_theta_dxx = derivative_util.d_phi_dxx(x_, y_)
        d_theta_dyy = derivative_util.d_phi_dyy(x_, y_)
        d_theta_dxy = derivative_util.d_phi_dxy(x_, y_)

        f_xx = d_phi_dr2 * dr_dx**2 + d_phi_dr * dr_dxx + d_phi_d_theta2 * d_theta_dx**2 + d_phi_d_theta * d_theta_dxx + 2 * d_phi_dr_dtheta * dr_dx * d_theta_dx
        f_yy = d_phi_dr2 * dr_dy**2 + d_phi_dr * dr_dyy + d_phi_d_theta2 * d_theta_dy**2 + d_phi_d_theta * d_theta_dyy + 2 * d_phi_dr_dtheta * dr_dy * d_theta_dy
        f_xy = d_phi_dr2 * dr_dx * dr_dy + d_phi_dr * dr_dxy + d_phi_d_theta2 * d_theta_dx * d_theta_dy + d_phi_d_theta * d_theta_dxy + d_phi_dr_dtheta * dr_dx * d_theta_dy + d_phi_dr_dtheta * dr_dy * d_theta_dx
        return f_xx * coeff, f_xy * coeff, f_xy * coeff, f_yy * coeff
Пример #23
0
 def function(x, y, gamma_ext, psi_ext, ra_0=0, dec_0=0):
     # change to polar coordinate
     r, phi = param_util.cart2polar(x - ra_0, y - dec_0)
     f_ = 1. / 2 * gamma_ext * r**2 * np.cos(2 * (phi - psi_ext))
     return f_
Пример #24
0
 def function(self, x, y, e1, e2, ra_0=0, dec_0=0):
     # change to polar coordinates
     psi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)
     theta, phi = param_util.cart2polar(x - ra_0, y - dec_0)
     f_ = 1. / 2 * gamma_ext * theta**2 * np.cos(2 * (phi - psi_ext))
     return f_