def test_pde_constrained(polynomial_order, in_expression):
    interpolate_expression = Expression(in_expression, degree=3)
    xmin, xmax = 0., 1.
    ymin, ymax = 0., 1.

    property_idx = 1
    dt = 1.
    k = polynomial_order

    # Make mesh
    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 40, 40)

    # Make function spaces and functions
    W_e = FiniteElement("DG", mesh.ufl_cell(), k)
    T_e = FiniteElement("DG", mesh.ufl_cell(), 0)
    Wbar_e = FiniteElement("DGT", mesh.ufl_cell(), k)

    W = FunctionSpace(mesh, W_e)
    T = FunctionSpace(mesh, T_e)
    Wbar = FunctionSpace(mesh, Wbar_e)

    psi_h, psi0_h = Function(W), Function(W)
    lambda_h = Function(T)
    psibar_h = Function(Wbar)

    uadvect = Constant((0, 0))

    # Define particles
    x = RandomRectangle(Point(xmin, ymin), Point(xmax,
                                                 ymax)).generate([500, 500])
    s = assign_particle_values(x, interpolate_expression)
    psi0_h.assign(interpolate_expression)

    # Just make a complicated particle, possibly with scalars and vectors mixed
    p = particles(x, [s], mesh)
    p.interpolate(psi0_h, 1)

    # Initialize forms
    FuncSpace_adv = {
        'FuncSpace_local': W,
        'FuncSpace_lambda': T,
        'FuncSpace_bar': Wbar
    }
    forms_pde = FormsPDEMap(mesh, FuncSpace_adv).forms_theta_linear(
        psi0_h, uadvect, dt, Constant(1.0))
    pde_projection = PDEStaticCondensation(mesh, p, forms_pde['N_a'],
                                           forms_pde['G_a'], forms_pde['L_a'],
                                           forms_pde['H_a'], forms_pde['B_a'],
                                           forms_pde['Q_a'], forms_pde['R_a'],
                                           forms_pde['S_a'], [], property_idx)

    # Assemble and solve
    pde_projection.assemble(True, True)
    pde_projection.solve_problem(psibar_h, psi_h, lambda_h, 'none', 'default')

    error_psih = abs(assemble((psi_h - psi0_h) * (psi_h - psi0_h) * dx))
    error_lamb = abs(assemble(lambda_h * lambda_h * dx))

    assert error_psih < 1e-15
    assert error_lamb < 1e-15
Пример #2
0
            step += 1
            t += float(dt)

            if comm.rank == 0:
                print("Step " + str(step))

            # Advect particle, assemble and solve pde projection
            t1 = Timer("[P] Advect particles step")
            AD.do_sweep()
            ap.do_step(float(dt))
            AD.do_sweep_failsafe(4)
            del t1

            if projection_type == "PDE":
                t1 = Timer("[P] Assemble PDE system")
                pde_projection.assemble(True, True)
                del t1
                t1 = Timer("[P] Solve projection")
                pde_projection.solve_problem(psibar_h, psi_h, "mumps",
                                             "default")
                del t1
            else:
                t1 = Timer("[P] Solve projection")
                lstsq_psi.project(psi_h)
                del t1

            t1 = Timer("[P] Update and store")
            # Update old solution
            assign(psi0_h, psi_h)

            # Store field
    old_area = assemble(phih0*dx)

    # Pre-assemble rhs
    pde_projection.assemble_state_rhs()

    # Advect the particles
    ap.do_step(float(dt))

    # Move mesh
    umesh.assign(u_expre_neg)
    ALE.move(mesh, project(umesh * dt, Vcg))

    # Relocate particles as a result of mesh motion
    ap.update_facets_info()
    p.relocate()

    # Assemble left-hand side on new config, but not the right-hand side
    pde_projection.assemble(True, False)
    pde_projection.solve_problem(phibar, phih, 'mumps', 'none')

    # Area on new configuration
    new_area = assemble(phih*dx)

    # Update solution
    assign(phih0, phih)

    # Global mass error, should be machine precision
    print("Mass error "+str(new_area - old_area))

    outfile << phih0
while step < num_steps:
    step += 1
    t += float(dt)

    if comm.Get_rank() == 0:
        print("Step " + str(step) + ', time = ' + str(t))

    # Advect
    t1 = Timer("[P] advect particles")
    ap.do_step(float(dt))
    del (t1)

    # Project density and specific momentum
    t1 = Timer("[P] density projection")
    if projection_type == 'PDE':
        pde_rho.assemble(True, True)
        pde_rho.solve_problem(rhobar, rho, solver, "default")
    else:
        lstsq_rho.project(rho, float(rho2), float(rho1))
    del (t1)

    t1 = Timer("[P] momentum projection")
    if projection_type == 'PDE':
        pde_u.assemble(True, True)
        pde_u.solve_problem(ustar_bar, ustar, solver, "default")
    else:
        lstsq_u.project(ustar)
    del (t1)

    t1 = Timer("[P] Computing conservation statements, just output!")
    #
Пример #5
0
def test_moving_mesh():
    t = 0.
    dt = 0.025
    num_steps = 20
    xmin, ymin = 0., 0.
    xmax, ymax = 2., 2.
    xc, yc = 1., 1.
    nx, ny = 20, 20
    pres = 150
    k = 1

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), nx, ny)
    n = FacetNormal(mesh)

    # Class for mesh motion
    dU = PeriodicVelocity(xmin, xmax, dt, t, degree=1)

    Qcg = VectorFunctionSpace(mesh, 'CG', 1)

    boundaries = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
    boundaries.set_all(0)
    leftbound = Left(xmin)

    leftbound.mark(boundaries, 99)
    ds = Measure('ds', domain=mesh, subdomain_data=boundaries)

    # Create function spaces
    Q_E_Rho = FiniteElement("DG", mesh.ufl_cell(), k)
    T_1 = FunctionSpace(mesh, 'DG', 0)
    Qbar_E = FiniteElement("DGT", mesh.ufl_cell(), k)

    Q_Rho = FunctionSpace(mesh, Q_E_Rho)
    Qbar = FunctionSpace(mesh, Qbar_E)

    phih, phih0 = Function(Q_Rho), Function(Q_Rho)
    phibar = Function(Qbar)

    # Advective velocity
    uh = Function(Qcg)
    uh.assign(Constant((0., 0.)))
    # Mesh velocity
    umesh = Function(Qcg)
    # Total velocity
    uadvect = uh-umesh

    # Now throw in the particles
    x = RandomRectangle(Point(xmin, ymin), Point(xmax, ymax)).generate([pres, pres])
    s = assign_particle_values(x, GaussianPulse(center=(xc, yc), sigma=float(0.25),
                                                U=[0, 0], time=0., height=1., degree=3))
    x = comm.bcast(x, root=0)
    s = comm.bcast(s, root=0)
    p = particles(x, [s], mesh)

    # Define projections problem
    FuncSpace_adv = {'FuncSpace_local': Q_Rho, 'FuncSpace_lambda': T_1, 'FuncSpace_bar': Qbar}
    FormsPDE = FormsPDEMap(mesh, FuncSpace_adv, ds=ds)
    forms_pde = FormsPDE.forms_theta_linear(phih0, uadvect, dt, Constant(1.0), zeta=Constant(0.))
    pde_projection = PDEStaticCondensation(mesh, p,
                                           forms_pde['N_a'], forms_pde['G_a'], forms_pde['L_a'],
                                           forms_pde['H_a'],
                                           forms_pde['B_a'],
                                           forms_pde['Q_a'], forms_pde['R_a'], forms_pde['S_a'],
                                           [], 1)

    # Initialize the initial condition at mesh by an l2 projection
    lstsq_rho = l2projection(p, Q_Rho, 1)
    lstsq_rho.project(phih0.cpp_object())

    for step in range(num_steps):
        # Compute old area at old configuration
        old_area = assemble(phih0*dx)

        # Pre-assemble rhs
        pde_projection.assemble_state_rhs()

        # Move mesh
        dU.compute_ubc()
        umesh.assign(project(dU, Qcg))

        ALE.move(mesh, project(dU * dt, Qcg))
        dU.update()

        # Relocate particles as a result of mesh motion
        # NOTE: if particles were advected themselve,
        # we had to run update_facets_info() here as well
        p.relocate()

        # Assemble left-hand side on new config, but not the right-hand side
        pde_projection.assemble(True, False)
        pde_projection.solve_problem(phibar.cpp_object(), phih.cpp_object(),
                                     'mumps', 'none')

        # Needed to compute conservation, note that there
        # is an outgoing flux at left boundary
        new_area = assemble(phih*dx)
        gamma = conditional(ge(dot(uadvect, n), 0), 0, 1)
        bflux = assemble((1-gamma) * dot(uadvect, n) * phih * ds)

        # Update solution
        assign(phih0, phih)

        # Put assertion on (global) mass balance, local mass balance is
        # too time consuming but should pass also
        assert new_area - old_area + bflux * dt < 1e-12

        # Assert that max value of phih stays close to 2 and
        # min value close to 0. This typically will fail if
        # we do not do a correct relocate of particles
        assert np.amin(phih.vector().get_local()) > -0.015
        assert np.amax(phih.vector().get_local()) < 1.04