from lexicon_convert import lexicon_convert from stats import stats, stats_dash from reweight import reweight, reweight_dash from bayes import posterior, combine, save_readable import pickle GE = 'german' PC = 'GermanPC' WS = 'GermanSentiWS' SP = 'GermanSentiSpin' full_lex = lexicon_convert('../../data/merged_lex_hash.pm') # Remove SentiSpin lex = {} for item, vals in full_lex.items(): if SP in vals: if len(vals) == 1: continue else: del vals[SP] lex[item] = vals rms = stats(lex, (GE, PC, WS)) reweight(lex, rms) new = stats_dash(lex, (GE, WS)) reweight_dash(lex, new) inf = posterior(lex, (GE, PC, WS), tol=10**-9, bounds = ((0.001,10),(0.001,5),(0.001,5),(0.001,5)),
from lexicon_convert import lexicon_convert from stats import stats, stats_dash from reweight import reweight, reweight_dash from bayes import posterior, combine, save_readable import pickle GE = 'german' PC = 'GermanPC' WS = 'GermanSentiWS' SP = 'GermanSentiSpin' lex = lexicon_convert('../../data/merged_lex_hash.pm', verbose=False) rms = stats(lex, (GE, PC, WS, SP), verbose=False) reweight(lex, rms) new = stats_dash(lex, (GE, WS, SP), verbose=False) reweight_dash(lex, new) with open('../../data/premerge.pk', 'wb') as f: pickle.dump(lex, f) inf = posterior(lex, (GE, PC, WS, SP), tol=10**-9, initial=[ 0.52847201, 0.32771543, 0.31697963, 0.44575393, 0.60947068]) deviation = {'prior':inf['x'][0], GE:inf['x'][1], PC:inf['x'][2], WS:inf['x'][3], SP:inf['x'][4]} new_lex, weight = combine(lex, deviation)