Пример #1
0
 def from_config(cls, config_path):
     """
     Method creates cls instance from given config_path.
     Args:
         config_path: Path to file with clusterizer config.
     Returns:
         clusterizer: Object that can do clustering.
     """
     clusterizer, _ = build_from_config_path(config_path)
     return clusterizer
Пример #2
0
    def from_config(cls, config_path):
        """
        Method for creating dataset reader instance of 'cls' class.

        Args:
            config_path: Path to file with dataset reader config.
        Returns:
            dataset_reader: Instance of class 'cls'
        """
        dataset_reader, _ = build_from_config_path(config_path)
        return dataset_reader
Пример #3
0
 def from_config(cls, config_path: str):
     """
     Builds an object of a class that inherits from this class
         using parameters described in a config file
     Args:
         config_path: path to .jsonnet config.
             For example, see this config for LexSubEvaluation class:
             "configs/evaluations/lexsub/semeval_all_elmo.jsonnet"
     Returns: an object that was created with the parameters described in the given config
     """
     evaluation_object, _ = build_from_config_path(config_path)
     return evaluation_object
Пример #4
0
    def from_config(cls, config_path):
        """
        Create substitute generator from configuration.

        Args:
            config_path: path to configuration file.

        Returns:
            object of the SubstituteGenerator class.
        """
        subst_generator, _ = build_from_config_path(config_path)
        return subst_generator
Пример #5
0
    def evaluate(
        self,
        config_path: str = None,
        config: Optional[Dict] = None,
        additional_modules: Optional[List[str]] = None,
        experiment_name: Optional[str] = None,
        run_name: Optional[str] = None,
    ) -> NoReturn:
        """
        Evaluates task defined by configuration file.

        Args:
            config_path: path to a configuration file.
            config: configuration of a task.
            additional_modules: path to directories with modules that should be registered in global Registry.
            experiment_name: results of the run will be added to 'experiment_name' experiment in MLflow.
            run_name: this run will be marked as 'run_name' in MLflow.
        """
        # Instantiate objects from config
        task, config = build_from_config_path(config_path, config)

        self.import_additional_modules(additional_modules)

        # Create experiment with given name or get already existing
        if experiment_name is None:
            experiment_name = config["class_name"]
        experiment_id = get_experiment_id(self.mlflow_client, experiment_name)

        # Add Run name in MLFlow tags
        tags = copy(self.git_tags)
        if config_path is not None and run_name is None:
            run_name = Path(config_path).stem
        if run_name is not None:
            tags[MLFLOW_RUN_NAME] = run_name

        # Create Run entity for tracking
        run_entity = self.mlflow_client.create_run(experiment_id=experiment_id,
                                                   tags=tags)
        saved_params = dict()
        generator_params = config["substitute_generator"]
        log_params(self.mlflow_client, run_entity, generator_params,
                   saved_params)

        dump_json(self.run_dir / "config.json", config)

        logger.info("Evaluating...")
        metrics = task.evaluate(run_dir=self.run_dir)
        metrics = metrics["mean_metrics"]
        log_metrics(self.mlflow_client, run_entity, metrics)
        self.mlflow_client.log_artifacts(run_entity.info.run_uuid,
                                         local_dir=self.run_dir)
        logger.info("Evaluation performed.")
Пример #6
0
    def augment(self,
                dataset_name: str,
                config_path: str = None,
                config: Optional[Dict] = None):
        """
        Performs dataset augmentation.

        Args:
            dataset_name: name of the dataset to augment
            config_path: path to a configuration file.
            config: configuration of a task
        """
        augmenter, config = build_from_config_path(config_path, config)

        dump_json(self.run_dir / "config.json", config)

        logger.info(f"Augmenting {dataset_name}...")
        augmented_dataset = augmenter.augment_dataset(
            dataset_name=dataset_name)
        augmented_dataset.to_csv(self.run_dir / "augmented_dataset.tsv",
                                 sep="\t",
                                 index=False)
        logger.info(
            f"Augmentation performed. Results was saved in {self.run_dir}")
def test_loading_all_configs(config_path: str):
    print(f"Trying to load '{config_path}' config")
    build_from_config_path(str(config_path))