Пример #1
0
def main(args):

    # load model
    if 'full' in args.model:
        model = LFADS_full.load(args.model)
    else:
        model = LFADS.load(args.model)
    if args.gpu is not None:
        cuda.get_device(args.gpu).use()
        model.to_gpu(args.gpu)
        xp = cuda.cupy
    else:
        xp = np

    # generate completely new samples
    print("generate completely new samples from prior distribution...")

    # sample initial condition (g0)
    mus = xp.zeros((args.batch_size, model.generator.g_dims), dtype=xp.float32)
    sigmas = xp.ones((args.batch_size, model.generator.g_dims),
                     dtype=xp.float32)
    g0_bxd = F.gaussian(Variable(mus), Variable(sigmas))

    # inffered inputs are sampled from a Gaussian autoregressive prior
    xs = []
    for i in range(args.nsample):
        print("now generating %d'th sample among %d" % (i, args.nsample))
        if i == 0:
            u_i_bxd = model.generator.sample_u_1(xp.ndarray(None),
                                                 batch_size=args.batch_size,
                                                 prior_sample=True)
            g_i_bxd = model.generator(u_i_bxd, hx=g0_bxd)
        else:
            u_i_bxd = model.generator.sample_u_i(xp.ndarray(None),
                                                 u_i_bxd,
                                                 batch_size=args.batch_size,
                                                 prior_sample=True)
            g_i_bxd = model.generator(u_i_bxd, hx=g_i_bxd)
        f_i = model.generator.l_f(g_i_bxd)
        x_i = model.generator.sample_x_hat(f_i, calc_rec_loss=False)
        xs.append(cuda.to_cpu(x_i.data))

    # save
    data_dict = {'xs': xs}
    data_fname = args.model + '_prior_sampling.h5'
    with h5py.File(data_fname, 'w') as hf:
        for k, v in data_dict.items():
            hf.create_dataset(k, data=v, compression=False)
Пример #2
0
def main(args):

    # load data
    print >> sys.stderr, 'Loading data...'
    dataset = util.read_datasets(args.data_path, args.data_fname_stem)
    train_data = dataset["train_data"]
    test_data = dataset["valid_data"]

    # load model
    if 'full' in args.model:
        model = LFADS_full.load(args.model)
    else:
        model = LFADS.load(args.model)
    if args.gpu is not None:
        cuda.get_device(args.gpu).use()
        model.to_gpu(args.gpu)

    # posterior sampling
    # encoder
    ndata = train_data.shape[0]
    x_hat_all = []
    f_all = []
    for i in range(ndata):
        print("now %d'th data among %d" % (i, ndata))
        x_data = train_data[i, :, :].astype(np.float32)
        x_data = x_data[np.newaxis, :, :]
        x_data = np.tile(x_data, (args.nsample, 1, 1))

        # copy data to GPU
        if args.gpu is not None:
            x_data = cuda.to_gpu(x_data)

        # create variable
        xs = []
        [xs.append(Variable(x.astype(np.float32))) for x in x_data]

        # encoder
        _, h_bxtxd = model.encoder(xs)
        h_bxtxd = F.stack(h_bxtxd, 0)
        d_dims = h_bxtxd.data.shape[2]

        # generator
        g0_bxd, _ = model.generator.sample_g0(
            F.concat(
                [h_bxtxd[:, 0, -d_dims / 2:], h_bxtxd[:, -1, :d_dims / 2]],
                axis=1))
        f0_bxd = model.generator.l_f(g0_bxd)

        # sampling
        x_hat = []
        f_trial = []

        for j in range(0, h_bxtxd[0].data.shape[0]):
            if j == 0:
                if 'full' in args.model:
                    con_i = model.controller(
                        F.concat((f0_bxd, h_bxtxd[:, j, :d_dims / 2],
                                  h_bxtxd[:, j, d_dims / 2:]),
                                 axis=1))
                    u_i_bxd, _ = model.generator.sample_u_1(con_i)
                    g_i_bxd = model.generator(u_i_bxd, hx=g0_bxd)
                else:
                    g_i_bxd = model.generator(F.concat([
                        h_bxtxd[:, j, :d_dims / 2], h_bxtxd[:, j, d_dims / 2:]
                    ],
                                                       axis=1),
                                              hx=g0_bxd)
            else:
                if 'full' in args.model:
                    con_i = model.controller(F.concat([
                        f_i, h_bxtxd[:, j, :d_dims / 2], h_bxtxd[:, j,
                                                                 d_dims / 2:]
                    ],
                                                      axis=1),
                                             hx=con_i)
                    u_i_bxd, _ = model.generator.sample_u_i(con_i, u_i_bxd)
                    g_i_bxd = model.generator(u_i_bxd, hx=g_i_bxd)
                else:
                    g_i_bxd = model.generator(F.concat([
                        h_bxtxd[:, j, :d_dims / 2], h_bxtxd[:, j, d_dims / 2:]
                    ],
                                                       axis=1),
                                              hx=g_i_bxd)

            f_i = model.generator.l_f(g_i_bxd)
            x_hat_i = model.generator.sample_x_hat(f_i,
                                                   xs=Variable(x_data[:,
                                                                      j, :]),
                                                   nrep=1,
                                                   calc_rec_loss=False)
            f_i = F.mean(f_i, axis=0)
            x_hat.append(cuda.to_cpu(x_hat_i.data))
            f_trial.append(cuda.to_cpu(f_i.data))
        x_hat_all.append(x_hat)
        f_all.append(f_trial)

    # save
    data_dict = {'x_hat_all': x_hat_all, 'f_all': f_all}
    data_fname = args.model + '_posterior_sampling.h5'
    with h5py.File(data_fname, 'w') as hf:
        for k, v in data_dict.items():
            hf.create_dataset(k, data=v, compression=False)