def main(args): CREATE_INDIVIDUAL = False files = [] if len(args) == 0: print "No input arguments. Use -h or --help for more info." exit() for argument in args: if argument in ["-h", "--help"]: print "Magazine creator assistant:" print "Two ways" print " 1) python args.py [input files] [destination file] --> all input files are joined into one destination file." print " 2) python args.py --nojoin [input files] --> each input file is saved as odt as {input_file}.odt" exit() elif argument in ["-n", "--nojoin"]: CREATE_INDIVIDUAL = True else: files.append(argument) if not CREATE_INDIVIDUAL: glob = OpenDocumentText() dest = files[-1] files = files[:-1] if files == []: print "ERROR: NO INPUT FILES. EXITING..." exit() c = 0 for f in files: defs = FileParser(f).parse() ta = TemplateApplier(defs["TEMPLATE"], defs) xml = ta.get() addit = False if not CREATE_INDIVIDUAL and not c == len(files) - 1: addit = True obj = FileCreator(xml, addit).get() obj.text = obj.text if CREATE_INDIVIDUAL: doc = OpenDocumentText() for style in obj.styles: doc.styles.addElement(style) for t in obj.text: doc.text.addElement(t) doc.save(f + ".odt") else: for style in obj.styles: glob.styles.addElement(style) for t in obj.text: glob.text.addElement(t) c += 1 if not CREATE_INDIVIDUAL: glob.save(dest)
from lib.NaiveBayesClassifier import NaiveBayesClassifier from lib.FileParser import FileParser fileParser = FileParser() # cvs format #fileParser.parseDBData("db_car.txt") #fileParser.printDBData() # weka format fileParser.buildFileDescription("car.data", "db_car.txt") fileParser.parseFileDescription("db_car.txt") fileParser.parseCVSPatterns("car.data") fileParser.parseCVS2Numeric("car_numeric.data") fileParser.convertTestFileNumeric("car-prueba.data", "car-prueba_numeric.data") classifier = NaiveBayesClassifier(fileParser) classifier.train(fileParser.fvector, fileParser.label) #classifier.printTables() classifier.testFile("car-prueba.data") #input_data = ['vhigh', 'vhigh', 2, 2, 'med', 'med', 'unacc'] #classifier.test(input_data)
from lib.NaiveBayesClassifier import NaiveBayesClassifier from lib.FileParser import FileParser fileParser = FileParser() fileParser.parseFileDescription("db_tennis.txt") #fileParser.printDBData() fileParser.parseCVSPatterns("tennis.data") #fileParser.printPatterns() classifier = NaiveBayesClassifier(fileParser) classifier.train(fileParser.fvector, fileParser.label) #classifier.printTables() ################## VALIDACION input_data = ['Sunny', 'Cool', 'High', 'Strong', 'No'] classifier.test(input_data)