Пример #1
0
def compare_walking_angles(files, list_of_index, legend=None):
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle('Walking Joint Angles', fontsize=20)
    hip = []
    knee = []
    ankle = []
    time = None
    resample = 100000
    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        joints = trial.get_joint_trajectories()
        sample = len(joints["Rhip"][i].angle.data)
        resample = min(resample, sample)

    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        joints = trial.get_joint_trajectories()
        hip.append(signal.resample(joints["Rhip"][i].angle.data, resample))
        knee.append(signal.resample(joints["Rknee"][i].angle.data, resample))
        ankle.append(signal.resample(joints["Rankle"][i].angle.data, resample))

    time = np.linspace(0, 1, resample)
    hip = np.array(hip)
    knee = np.array(knee)
    ankle = np.array(ankle)

    mean_hip = smooth(np.mean(hip, axis=0), 5)
    mean_knee = smooth(np.mean(knee, axis=0), 5)
    mean_ankle = smooth(np.mean(ankle, axis=0), 5)

    std_hip = np.std(hip, axis=0)
    std_knee = np.std(knee, axis=0)
    std_ankle = np.std(ankle, axis=0)

    print "Ankle: "
    print "Max Hip: ", np.max(np.abs(mean_hip)), " Std: ", std_hip[mean_hip.tolist().index(np.max(mean_hip))]
    print "Max Knee: ", np.max(np.abs(mean_knee)), " Std: ", std_knee[mean_knee.tolist().index(np.max(mean_knee))]
    print "Max Ankle: ", np.max(np.abs(mean_ankle)), " Std: ", std_ankle[mean_ankle.tolist().index(np.max(mean_ankle))]

    print "Min Hip: ", np.min(np.abs(mean_hip)), " Std: ", std_hip[mean_hip.tolist().index(np.min(mean_hip))]
    print "Min Knee: ", np.min(np.abs(mean_knee)), " Std: ", std_knee[mean_knee.tolist().index(np.min(mean_knee))]
    print "Min Ankle: ", np.min(np.abs(mean_ankle)), " Std: ", std_ankle[mean_ankle.tolist().index(np.min(mean_ankle))]

    ax1.plot(time, mean_hip, 'k-', linewidth=4)
    ax2.plot(time, mean_knee, 'k-', linewidth=4)
    ax3.plot(time, mean_ankle, 'k-', linewidth=4)

    ax1.fill_between(time, smooth(mean_hip - std_hip, 5), smooth(mean_hip + std_hip, 5))
    ax2.fill_between(time, smooth(mean_knee - std_knee, 5), smooth(mean_knee + std_knee, 5))
    ax3.fill_between(time, smooth(mean_ankle - std_ankle, 5), smooth(mean_ankle + std_ankle, 5))
    font_size = 25
    ax1.set_ylabel("Degrees", fontsize=font_size)
    ax2.set_ylabel("Degrees", fontsize=font_size)
    ax3.set_ylabel("Degrees", fontsize=font_size)
    ax1.set_title("Hip", fontsize=font_size)
    ax2.set_title("Knee", fontsize=font_size)
    ax3.set_title("Ankle", fontsize=font_size)
    plt.xlabel("Gait %", fontsize=font_size)

    plt.show()
Пример #2
0
def plot_knee(files, list_of_index):
    plt.rcParams.update({'font.size': 22})
    plt.rcParams['xtick.labelsize'] = 25
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle('Walking Knee Joint', fontsize=20)
    angle = []
    power = []
    moment = []
    time = None
    resample = 100000
    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        trial.create_index_seperators()
        joints = trial.get_joint_trajectories()
        sample = len(joints["Rhip"][i].angle.data)
        resample = min(resample, sample)

    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        trial.create_index_seperators()
        joints = trial.get_joint_trajectories()
        angle.append(signal.resample(joints["Rknee"][i].angle.data, resample))
        power.append(signal.resample(joints["Rknee"][i].power.data, resample))
        moment.append(signal.resample(joints["Rknee"][i].moment.data, resample))

    time = np.linspace(0, 1, resample)
    angle = np.array(angle)
    power = np.array(power)
    moment = np.array(moment)

    mean_angle = smooth(np.mean(angle, axis=0), 5)
    mean_power = smooth(np.mean(power, axis=0), 5)
    mean_moment = smooth(np.mean(moment, axis=0), 5)

    std_hip = np.std(angle, axis=0)
    std_knee = np.std(power, axis=0)
    std_ankle = np.std(moment, axis=0)



    ax1.plot(time, mean_angle, 'k-', linewidth=4)
    ax2.plot(time, mean_power, 'k-', linewidth=4)
    ax3.plot(time, mean_moment, 'k-', linewidth=4)

    ax1.fill_between(time, smooth(mean_angle - std_hip, 5), smooth(mean_angle + std_hip, 5))
    ax2.fill_between(time, smooth(mean_power - std_knee, 5), smooth(mean_power + std_knee, 5))
    ax3.fill_between(time, smooth(mean_moment - std_ankle, 5), smooth(mean_moment + std_ankle, 5))

    ax1.set_ylabel("Degrees", fontsize=30)
    ax2.set_ylabel("W/Kg", fontsize=30)
    ax3.set_ylabel("Nmm/Kg", fontsize=30)
    ax1.set_title("Angle", fontsize=30)
    ax2.set_title("Power", fontsize=30)
    ax3.set_title("Moment", fontsize=20)
    plt.xlabel("Gait %", fontsize=20)

    plt.show()
Пример #3
0
def compare_walking_power(files, list_of_index, legend=None):
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle('Walking Joint Power', fontsize=20)
    hip = []
    knee = []
    ankle = []
    time = None
    resample = 100000
    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        joints = trial.get_joint_trajectories()
        print "file ", file
        sample = len(joints["Rhip"][i].angle.data)
        resample = min(resample, sample)

    for file, i in zip(files, list_of_index):
        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        joints = trial.get_joint_trajectories()
        hip.append(signal.resample(abs(joints["Rhip"][i].power.data), resample))
        knee.append(signal.resample(abs(joints["Rknee"][i].power.data), resample))
        ankle.append(signal.resample(abs(joints["Rankle"][i].power.data), resample))

    time = np.linspace(0, 1, resample)
    hip = np.array(hip)
    knee = np.array(knee)
    ankle = np.array(ankle)

    mean_hip = smooth(np.mean(hip, axis=0), 5)
    mean_knee = smooth(np.mean(knee, axis=0), 5)
    mean_ankle = smooth(np.mean(ankle, axis=0), 5)

    std_hip = np.std(hip, axis=0)
    std_knee = np.std(knee, axis=0)
    std_ankle = np.std(ankle, axis=0)

    ax1.plot(time, mean_hip, 'k-', linewidth=4)
    ax2.plot(time, mean_knee, 'k-', linewidth=4)
    ax3.plot(time, mean_ankle, 'k-', linewidth=4)

    ax1.fill_between(time, smooth(mean_hip - std_hip, 5), smooth(mean_hip + std_hip, 5))
    ax2.fill_between(time, smooth(mean_knee - std_knee, 5), smooth(mean_knee + std_knee, 5))
    ax3.fill_between(time, smooth(mean_ankle - std_ankle, 5), smooth(mean_ankle + std_ankle, 5))

    ax1.set_ylabel("W/Kg", fontsize=20)
    ax2.set_ylabel("W/Kg", fontsize=20)
    ax3.set_ylabel("W/Kg", fontsize=20)
    ax1.set_title("Hip", fontsize=20)
    ax2.set_title("Knee", fontsize=20)
    ax3.set_title("Ankle", fontsize=20)
    plt.xlabel("Gait %", fontsize=20)

    plt.show()
Пример #4
0
def get_stair_ranges(file, side="R"):
    trial = Trial.ViconGaitingTrial(vicon_file=file)
    if side == "R":
        m = trial.vicon.markers.get_marker("RTOE")
    else:
        m = trial.vicon.markers.get_marker("LTOE")

    z = []
    for i in xrange(len(m)):
        z.append(m[i].z)

    N = 10
    z = smooth(map(int, z), 5)
    z = np.convolve(z, np.ones((N,)) / N, mode='valid')

    max_peakind = np.diff(np.sign(np.diff(z))).flatten()  # the one liner
    max_peakind = np.pad(max_peakind, (1, 1), 'constant', constant_values=(0, 0))
    max_peakind = [index for index, value in enumerate(max_peakind) if value == -2]
    secound_step = max_peakind[-1]
    first_step = max_peakind[-2]

    index = secound_step
    while z[index] != z[index + 1]:
        print index
        index += 1
    final_index = index

    index = first_step
    while z[index] != z[index - 1]:
        index -= 1
    start_index = index
    # plt.plot(z)
    return (start_index, final_index)
Пример #5
0
def compare_stair_angles(files, side):

    hip = []
    knee = []
    ankle = []

    indiecs = {}
    for file, s in zip(files, side):
        rn = get_stair_ranges(file, s)
        indiecs[file] = rn

    for file, s in zip(files, side):
        trial = Trial.ViconGaitingTrial(vicon_file=file)
        if s == "R":
            joints = trial.vicon.get_model_output().get_right_leg()
        else:
            joints = trial.vicon.get_model_output().get_left_leg()
        rn = indiecs[file]
        hip.append(-(np.pi / 180) * np.array(joints.hip.angle.x[rn[0]:rn[1]]))
        knee.append(-(np.pi / 180) *
                    np.array(joints.knee.angle.x[rn[0]:rn[1]]))
        ankle.append(-(np.pi / 180) *
                     np.array(joints.ankle.angle.x[rn[0]:rn[1]]))

    return hip, knee, ankle
Пример #6
0
def sit_to_stand(file):
    trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
    joints = trial.vicon.get_model_output().get_left_leg()

    angles = joints.knee.angle.x
    power = joints.knee.power.z
    moment = joints.knee.moment.x
    time = np.linspace(0, 1, len(moment))
    plt.rcParams.update({'font.size': 22})
    plt.rcParams['xtick.labelsize'] = 25
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle('Stair Knee Joint', fontsize=30)

    ax1.plot(time, angles, linewidth=4)
    ax2.plot(time, power, linewidth=4)
    ax3.plot(time, moment, linewidth=4)

    ax1.set_ylabel("Degrees", fontsize=30)
    ax2.set_ylabel("W/Kg", fontsize=30)
    ax3.set_ylabel("Nmm/Kg", fontsize=30)
    ax1.set_title("Angle", fontsize=30)
    ax2.set_title("Power", fontsize=30)
    ax3.set_title("Moment", fontsize=30)
    plt.xlabel("Gait %", fontsize=30)

    plt.show()
Пример #7
0
def plot_joint(file, index):
    trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
    trial.create_index_seperators()
    joints = trial.get_joint_trajectories()
    leg = []
    plt.plot(joints["Rknee"][index].angle.time, joints["Rknee"][index].angle.data)
    plt.show()
Пример #8
0
def plot_stair_joint(file):
    trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
    joints = trial.vicon.get_model_output().get_right_leg()
    plt.plot(joints.hip.angle.x)
    plt.plot(joints.knee.angle.x)
    plt.plot(joints.ankle.angle.x)
    print get_stair_ranges(file)
    plt.legend(["x", "y", "z"])
    plt.show()
Пример #9
0
def plot_signle_knee(file):
    trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
    joints = trial.get_joint_trajectories()
    leg = []
    for i in xrange(len(joints["Rknee"])):
        leg.append(i)
        plt.plot(joints["Rknee"][i].moment.time, joints["Rknee"][i].angle.data)
    plt.legend(leg)
    plt.show()
Пример #10
0
def compare_stair_power(files, side, legend):
    print "asldjflasdjf"
    resample = 100000
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle('Stair Joint Power', fontsize=20)

    hip = []
    knee = []
    ankle = []

    resample = 1000000000

    indiecs = {}
    for file, s in zip(files, side):
        rn = get_stair_ranges(file, s)
        indiecs[file] = rn
        resample = min(resample, rn[1] - rn[0])

    for file, s in zip(files, side):

        trial = ViconGaitingTrial.ViconGaitingTrial(vicon_file=file)
        if s == "R":
            joints = trial.vicon.get_model_output().get_right_leg()
        else:
            joints = trial.vicon.get_model_output().get_left_leg()
        rn = indiecs[file]
        hip.append(signal.resample(np.abs(joints.hip.power.z[rn[0]:rn[1]]), resample))
        knee.append(signal.resample(np.abs(joints.knee.power.z[rn[0]:rn[1]]), resample))
        ankle.append(signal.resample(np.abs(joints.ankle.power.z[rn[0]:rn[1]]), resample))

    mean_hip = smooth(np.mean(hip, axis=0), 5)
    mean_knee = smooth(np.mean(knee, axis=0), 5)
    mean_ankle = smooth(np.mean(ankle, axis=0), 5)

    std_hip = np.std(hip, axis=0)
    std_knee = np.std(knee, axis=0)
    std_ankle = np.std(ankle, axis=0)
    time = np.linspace(0, 1, resample)
    ax1.plot(time, mean_hip, 'k-', linewidth=4)
    ax2.plot(time, mean_knee, 'k-', linewidth=4)
    ax3.plot(time, mean_ankle, 'k-', linewidth=4)

    ax1.fill_between(time, smooth(mean_hip - std_hip, 5), smooth(mean_hip + std_hip, 5))
    ax2.fill_between(time, smooth(mean_knee - std_knee, 5), smooth(mean_knee + std_knee, 5))
    ax3.fill_between(time, smooth(mean_ankle - std_ankle, 5), smooth(mean_ankle + std_ankle, 5))
    font_size = 25
    ax1.set_ylabel("W/Kg", fontsize=font_size),
    ax2.set_ylabel("W/Kg", fontsize=font_size)
    ax3.set_ylabel("W/Kg", fontsize=font_size)
    ax1.set_title("Hip", fontsize=font_size)
    ax2.set_title("Knee", fontsize=font_size)
    ax3.set_title("Ankle", fontsize=font_size)
    plt.xlabel("Gait %", fontsize=font_size)

    plt.show()