Пример #1
0
from tools.parse_arg_test import TestOptions
from lib.core.config import merge_cfg_from_file
from data.load_dataset import CustomerDataLoader
from lib.models.image_transfer import resize_image
from lib.utils.evaluate_depth_error import evaluate_err
from lib.models.metric_depth_model import MetricDepthModel
from lib.utils.logging import setup_logging, SmoothedValue
import matplotlib.pyplot as plt

logger = setup_logging(__name__)

if __name__ == '__main__':
    test_args = TestOptions().parse()
    test_args.thread = 1
    test_args.batchsize = 1
    merge_cfg_from_file(test_args)

    data_loader = CustomerDataLoader(test_args)
    test_datasize = len(data_loader)
    logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize))
    # load model
    model = MetricDepthModel()

    model.eval()

    # load checkpoint
    if test_args.load_ckpt:
        load_ckpt(test_args, model)
    model.cuda()
    model = torch.nn.DataParallel(model)
Пример #2
0
def test(model_path):
    test_args = TestOptions().parse()
    test_args.thread = 0
    test_args.batchsize = 1
    merge_cfg_from_file(test_args)

    data_loader = CustomerDataLoader(test_args)
    test_datasize = len(data_loader)
    logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize))
    # load model
    model = MetricDepthModel()

    model.eval()

    test_args.load_ckpt = model_path

    # load checkpoint
    if test_args.load_ckpt:
        load_ckpt(test_args, model)
    model.cuda()
    # model = torch.nn.DataParallel(model)

    # test
    smoothed_absRel = SmoothedValue(test_datasize)
    smoothed_rms = SmoothedValue(test_datasize)
    smoothed_logRms = SmoothedValue(test_datasize)
    smoothed_squaRel = SmoothedValue(test_datasize)
    smoothed_silog = SmoothedValue(test_datasize)
    smoothed_silog2 = SmoothedValue(test_datasize)
    smoothed_log10 = SmoothedValue(test_datasize)
    smoothed_delta1 = SmoothedValue(test_datasize)
    smoothed_delta2 = SmoothedValue(test_datasize)
    smoothed_delta3 = SmoothedValue(test_datasize)
    smoothed_whdr = SmoothedValue(test_datasize)

    smoothed_criteria = {
        'err_absRel': smoothed_absRel,
        'err_squaRel': smoothed_squaRel,
        'err_rms': smoothed_rms,
        'err_silog': smoothed_silog,
        'err_logRms': smoothed_logRms,
        'err_silog2': smoothed_silog2,
        'err_delta1': smoothed_delta1,
        'err_delta2': smoothed_delta2,
        'err_delta3': smoothed_delta3,
        'err_log10': smoothed_log10,
        'err_whdr': smoothed_whdr
    }

    for i, data in enumerate(data_loader):
        out = model.inference(data)
        pred_depth = torch.squeeze(out['b_fake'])
        img_path = data['A_paths']
        invalid_side = data['invalid_side'][0]
        pred_depth = pred_depth[invalid_side[0]:pred_depth.size(0) -
                                invalid_side[1], :]
        pred_depth = pred_depth / data['ratio'].cuda()  # scale the depth
        pred_depth = resize_image(pred_depth,
                                  torch.squeeze(data['B_raw']).shape)
        smoothed_criteria = evaluate_err(pred_depth,
                                         data['B_raw'],
                                         smoothed_criteria,
                                         mask=(45, 471, 41, 601),
                                         scale=10.)

        # save images
        model_name = test_args.load_ckpt.split('/')[-1].split('.')[0]
        image_dir = os.path.join(cfg.ROOT_DIR, './evaluation',
                                 cfg.MODEL.ENCODER, model_name)
        if not os.path.exists(image_dir):
            os.makedirs(image_dir)
        img_name = img_path[0].split('/')[-1]
        #plt.imsave(os.path.join(image_dir, 'd_' + img_name), pred_depth, cmap='rainbow')
        #cv2.imwrite(os.path.join(image_dir, 'rgb_' + img_name), data['A_raw'].numpy().squeeze())

        # print('processing (%04d)-th image... %s' % (i, img_path))

    # print("###############absREL ERROR: %f", smoothed_criteria['err_absRel'].GetGlobalAverageValue())
    # print("###############silog ERROR: %f", np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() - (
    #     smoothed_criteria['err_silog'].GetGlobalAverageValue()) ** 2))
    # print("###############log10 ERROR: %f", smoothed_criteria['err_log10'].GetGlobalAverageValue())
    # print("###############RMS ERROR: %f", np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue()))
    # print("###############delta_1 ERROR: %f", smoothed_criteria['err_delta1'].GetGlobalAverageValue())
    # print("###############delta_2 ERROR: %f", smoothed_criteria['err_delta2'].GetGlobalAverageValue())
    # print("###############delta_3 ERROR: %f", smoothed_criteria['err_delta3'].GetGlobalAverageValue())
    # print("###############squaRel ERROR: %f", smoothed_criteria['err_squaRel'].GetGlobalAverageValue())
    # print("###############logRms ERROR: %f", np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue()))

    f.write("tested model:" + model_path)
    f.write('\n')
    f.write("###############absREL ERROR:" +
            str(smoothed_criteria['err_absRel'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############silog ERROR:" + str(
        np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() -
                (smoothed_criteria['err_silog'].GetGlobalAverageValue())**2)))
    f.write('\n')
    f.write("###############log10 ERROR:" +
            str(smoothed_criteria['err_log10'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############RMS ERROR:" +
            str(np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue())))
    f.write('\n')
    f.write("###############delta_1 ERROR:" +
            str(smoothed_criteria['err_delta1'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############delta_2 ERROR:" +
            str(smoothed_criteria['err_delta2'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############delta_3 ERROR:" +
            str(smoothed_criteria['err_delta3'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############squaRel ERROR:" +
            str(smoothed_criteria['err_squaRel'].GetGlobalAverageValue()))
    f.write('\n')
    f.write(
        "###############logRms ERROR:" +
        str(np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue())))
    f.write('\n')
    f.write(
        '-----------------------------------------------------------------------------'
    )
    f.write('\n')
Пример #3
0
        bg_smoothed_criteria['err_absRel'].GetGlobalAverageValue(),
        'silog':
        np.sqrt(bg_smoothed_criteria['err_silog2'].GetGlobalAverageValue() -
                (bg_smoothed_criteria['err_silog'].GetGlobalAverageValue())**2)
    }
    print("global: ", val_metrics)
    print("roi: ", rois_val_metrics)
    print("bg: ", bg_val_metrics)
    return val_metrics


if __name__ == '__main__':
    train_dataloader = CustomerDataLoader(train_args)
    train_datasize = len(train_dataloader)
    gpu_num = torch.cuda.device_count()
    merge_cfg_from_file(train_datasize, gpu_num)

    val_dataloader = CustomerDataLoader(val_args)
    val_datasize = len(val_dataloader)

    # tensorboard logger
    if train_args.use_tfboard:
        from tensorboardX import SummaryWriter
        tblogger = SummaryWriter(cfg.TRAIN.LOG_DIR)

    # training status for logging
    training_stats = TrainingStats(
        train_args, cfg.TRAIN.LOG_INTERVAL,
        tblogger if train_args.use_tfboard else None)

    # total iterations
Пример #4
0
        pred_depth = pred_depth[invalid_side[0]:pred_depth.size(0) - invalid_side[1],
                                invalid_side[2]:pred_depth.size(1) - invalid_side[3]]

        pred_depth_resize = resize_image(pred_depth, torch.squeeze(data['B_raw']).shape)
        pred_depth_metric = recover_metric_depth(pred_depth_resize, data['B_raw'])
        smoothed_criteria = validate_rel_depth_err(pred_depth_metric, data['B_raw'], smoothed_criteria, scale=1.0)
    return {'abs_rel': smoothed_criteria['err_absRel'].GetGlobalAverageValue(),
            'whdr': smoothed_criteria['err_whdr'].GetGlobalAverageValue()}


if __name__=='__main__':
    # Train args
    train_opt = TrainOptions()
    train_args = train_opt.parse()
    merge_cfg_from_file(train_args)

    gpu_num = torch.cuda.device_count()
    cfg.TRAIN.GPU_NUM = gpu_num

    # Validation args
    val_opt = ValOptions()
    val_args = val_opt.parse()
    val_args.batchsize = 1
    val_args.thread = 0

    # Logger
    log_output_dir = cfg.TRAIN.LOG_DIR
    if log_output_dir:
        try:
            os.makedirs(log_output_dir)
Пример #5
0
    assert bool(args.load_ckpt) ^ bool(args.load_detectron), \
        'Exactly one of --load_ckpt and --load_detectron should be specified.'
    if args.output_dir is None:
        ckpt_path = args.load_ckpt if args.load_ckpt else args.load_detectron
        args.output_dir = os.path.join(
            os.path.dirname(os.path.dirname(ckpt_path)), 'test')
        logger.info('Automatically set output directory to %s',
                    args.output_dir)
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    cfg.VIS = args.vis

    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        merge_cfg_from_list(args.set_cfgs)

    if args.dataset == "coco2017":
        cfg.TEST.DATASETS = ('coco_2017_val', )
        cfg.MODEL.NUM_CLASSES = 81
    elif args.dataset == "keypoints_coco2017":
        cfg.TEST.DATASETS = ('keypoints_coco_2017_val', )
        cfg.MODEL.NUM_CLASSES = 2
    else:  # For subprocess call
        assert cfg.TEST.DATASETS, 'cfg.TEST.DATASETS shouldn\'t be empty'
    assert_and_infer_cfg()

    logger.info('Testing with config:')
    logger.info(pprint.pformat(cfg))
Пример #6
0
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        # Setup AdaBins model
        self.adabins_nyu_infer_helper = InferenceHelper(dataset='nyu',
                                                        device=self.device)
        self.adabins_kitti_infer_helper = InferenceHelper(dataset='kitti',
                                                          device=self.device)

        # Setup DiverseDepth model
        class DiverseDepthArgs:
            def __init__(self):
                self.resume = False
                self.cfg_file = "lib/configs/resnext50_32x4d_diversedepth_regression_vircam"
                self.load_ckpt = "pretrained/DiverseDepth.pth"

        diverse_depth_args = DiverseDepthArgs()
        merge_cfg_from_file(diverse_depth_args)
        self.diverse_depth_model = RelDepthModel()
        self.diverse_depth_model.eval()
        # load checkpoint
        load_ckpt(diverse_depth_args, self.diverse_depth_model)
        # TODO: update this - see how `device` argument should be processsed
        if self.device == "cuda":
            self.diverse_depth_model.cuda()
        self.diverse_depth_model = torch.nn.DataParallel(
            self.diverse_depth_model)

        # Setup MiDaS model
        self.midas_model_path = "./pretrained/MiDaS_f6b98070.pt"
        midas_model_type = "large"

        # load network
        if midas_model_type == "large":
            self.midas_model = MidasNet(self.midas_model_path,
                                        non_negative=True)
            self.midas_net_w, self.midas_net_h = 384, 384
        elif midas_model_type == "small":
            self.midas_model = MidasNet_small(self.midas_model_path,
                                              features=64,
                                              backbone="efficientnet_lite3",
                                              exportable=True,
                                              non_negative=True,
                                              blocks={'expand': True})
            self.midas_net_w, self.midas_net_h = 256, 256

        self.midas_transform = Compose([
            Resize(
                self.midas_net_w,
                self.midas_net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="upper_bound",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406],
                           std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
        ])

        self.midas_model.eval()

        self.midas_optimize = True
        if self.midas_optimize == True:
            rand_example = torch.rand(1, 3, self.midas_net_h, self.midas_net_w)
            self.midas_model(rand_example)
            traced_script_module = torch.jit.trace(self.midas_model,
                                                   rand_example)
            self.midas_model = traced_script_module

            if self.device == "cuda":
                self.midas_model = self.midas_model.to(
                    memory_format=torch.channels_last)
                self.midas_model = self.midas_model.half()

        self.midas_model.to(torch.device(self.device))

        # Setup SGDepth model
        self.sgdepth_model = InferenceEngine.SgDepthInference()

        # Setup monodepth2 model
        self.monodepth2_model_path = "pretrained/monodepth2_mono+stereo_640x192"
        monodepth2_device = torch.device(self.device)
        encoder_path = os.path.join(self.monodepth2_model_path, "encoder.pth")
        depth_decoder_path = os.path.join(self.monodepth2_model_path,
                                          "depth.pth")

        # LOADING PRETRAINED MODEL
        print("   Loading Monodepth2 pretrained encoder")
        self.monodepth2_encoder = networks.ResnetEncoder(18, False)
        loaded_dict_enc = torch.load(encoder_path,
                                     map_location=monodepth2_device)

        # extract the height and width of image that this model was trained with
        self.feed_height = loaded_dict_enc['height']
        self.feed_width = loaded_dict_enc['width']
        filtered_dict_enc = {
            k: v
            for k, v in loaded_dict_enc.items()
            if k in self.monodepth2_encoder.state_dict()
        }
        self.monodepth2_encoder.load_state_dict(filtered_dict_enc)
        self.monodepth2_encoder.to(monodepth2_device)
        self.monodepth2_encoder.eval()

        print("   Loading pretrained decoder")
        self.monodepth2_depth_decoder = networks.DepthDecoder(
            num_ch_enc=self.monodepth2_encoder.num_ch_enc, scales=range(4))

        loaded_dict = torch.load(depth_decoder_path,
                                 map_location=monodepth2_device)
        self.monodepth2_depth_decoder.load_state_dict(loaded_dict)

        self.monodepth2_depth_decoder.to(monodepth2_device)
        self.monodepth2_depth_decoder.eval()
def train(local_rank, distributed, train_args, logger, tblogger=None):
    # load model
    model = RelDepthModel()
    device = torch.device(cfg.MODEL.DEVICE)
    model.to(device)
    if cfg.MODEL.USE_SYNCBN:
        assert is_pytorch_1_1_0_or_later(), \
            "SyncBatchNorm is only available in pytorch >= 1.1.0"
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    # Optimizer
    optimizer = ModelOptimizer(model)
    #lr_optim_lambda = lambda iter: (1.0 - iter / (float(total_iters))) ** 0.9
    #scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer.optimizer, lr_lambda=lr_optim_lambda)
    lr_scheduler_step = 15000
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer.optimizer,
                                                step_size=lr_scheduler_step,
                                                gamma=0.9)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[local_rank], output_device=local_rank)

    val_err = [{'abs_rel': 0, 'whdr': 0}]

    # training and validation dataloader
    val_dataloader = MultipleDataLoaderDistributed(val_args)
    if train_args.load_ckpt:
        load_ckpt(train_args, model, optimizer.optimizer, scheduler, val_err)
        # obtain the current sample ratio
        sample_ratio = increase_sample_ratio_steps(
            train_args.start_step,
            base_ratio=train_args.sample_start_ratio,
            step_size=train_args.sample_ratio_steps)
        # reconstruct the train_dataloader with the new sample_ratio
        train_dataloader = MultipleDataLoaderDistributed(
            train_args, sample_ratio=sample_ratio)
        if not train_args.resume:
            scheduler.__setattr__('step_size', lr_scheduler_step)
    else:
        train_dataloader = MultipleDataLoaderDistributed(train_args)

    train_datasize = len(train_dataloader)
    val_datasize = len(val_dataloader)
    merge_cfg_from_file(train_args)

    # total iterations
    total_iters = math.ceil(
        train_datasize / train_args.batchsize) * train_args.epoch
    cfg.TRAIN.MAX_ITER = total_iters
    cfg.TRAIN.GPU_NUM = gpu_num

    # Print configs and logs
    if get_rank() == 0:
        train_opt.print_options(train_args)
        val_opt.print_options(val_args)
        print_configs(cfg)
        logger.info('{:>15}: {:<30}'.format('GPU_num', gpu_num))
        logger.info('{:>15}: {:<30}'.format('train_data_size', train_datasize))
        logger.info('{:>15}: {:<30}'.format('val_data_size', val_datasize))
        logger.info('{:>15}: {:<30}'.format('total_iterations', total_iters))

    save_to_disk = get_rank() == 0

    do_train(train_dataloader, val_dataloader, train_args, model, save_to_disk,
             scheduler, optimizer, val_err, logger, tblogger)