def _load_coco_annotation(self, index): """ Loads COCO bounding-box instance annotations. Crowd instances are handled by marking their overlaps (with all categories) to -1. This overlap value means that crowd "instances" are excluded from training. """ im_ann = self._COCO.loadImgs(index)[0] width = im_ann['width'] height = im_ann['height'] annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None) objs = self._COCO.loadAnns(annIds) # Sanitize bboxes -- some are invalid valid_objs = [] for obj in objs: x1 = np.max((0, obj['bbox'][0])) y1 = np.max((0, obj['bbox'][1])) x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1)))) y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1)))) if obj['area'] > 0 and x2 >= x1 and y2 >= y1: obj['clean_bbox'] = [x1, y1, x2, y2] valid_objs.append(obj) objs = valid_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) seg_areas = np.zeros((num_objs), dtype=np.float32) # Lookup table to map from COCO category ids to our internal class # indices coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls], self._class_to_ind[cls]) for cls in self._classes[1:]]) for ix, obj in enumerate(objs): cls = coco_cat_id_to_class_ind[obj['category_id']] boxes[ix, :] = obj['clean_bbox'] gt_classes[ix] = cls seg_areas[ix] = obj['area'] if obj['iscrowd']: # Set overlap to -1 for all classes for crowd objects # so they will be excluded during training overlaps[ix, :] = -1.0 else: overlaps[ix, cls] = 1.0 ds_utils.validate_boxes(boxes, width=width, height=height) overlaps = scipy.sparse.csr_matrix(overlaps) return { 'width': width, 'height': height, 'boxes': boxes, 'gt_classes': gt_classes, 'gt_overlaps': overlaps, 'flipped': False, 'seg_areas': seg_areas }
def _load_proposals(self, method, gt_roidb): """ Load pre-computed proposals in the format provided by Jan Hosang: http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal- computing/research/object-recognition-and-scene-understanding/how- good-are-detection-proposals-really/ For MCG, use boxes from http://www.eecs.berkeley.edu/Research/Projects/ CS/vision/grouping/mcg/ and convert the file layout using lib/datasets/tools/mcg_munge.py. """ box_list = [] top_k = self.config['top_k'] valid_methods = [ 'MCG', 'selective_search', 'edge_boxes_AR', 'edge_boxes_70' ] assert method in valid_methods print 'Loading {} boxes'.format(method) for i, index in enumerate(self._image_index): if i % 1000 == 0: print '{:d} / {:d}'.format(i + 1, len(self._image_index)) box_file = osp.join(cfg.DATA_DIR, 'coco_proposals', method, 'mat', self._get_box_file(index)) raw_data = sio.loadmat(box_file)['boxes'] boxes = np.maximum(raw_data - 1, 0).astype(np.uint16) if method == 'MCG': # Boxes from the MCG website are in (y1, x1, y2, x2) order boxes = boxes[:, (1, 0, 3, 2)] # Remove duplicate boxes and very small boxes and then take top k keep = ds_utils.unique_boxes(boxes) boxes = boxes[keep, :] keep = ds_utils.filter_small_boxes(boxes, self.config['min_size']) boxes = boxes[keep, :] boxes = boxes[:top_k, :] box_list.append(boxes) # Sanity check im_ann = self._COCO.loadImgs(index)[0] width = im_ann['width'] height = im_ann['height'] ds_utils.validate_boxes(boxes, width=width, height=height) return self.create_roidb_from_box_list(box_list, gt_roidb)