def combined_roidb(imdb_names):
    """
    Combine multiple roidbs
    """
    def get_roidb(imdb_name):
        # 构造了两个类:数据集类pascal_voc和图片类imdb
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))
        # 即选择真实物体groundtruth
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        # 获得训练数据
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
Пример #2
0
def combined_roidb(imdb_names):
    """
    Combine multiple roidbs
    """

    #print('get_roidb')
    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)
        print('Loaded Dataset `{:s}` for training'.format(imdb.name))
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    #print('roidbs',roidbs)
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
def combined_roidb(imdb_names):
    """Combine multiple roidbs"""

    # 融合roidb,roidb来自于数据集(实验可能用到多个),所以需要combine多个数据集的roidb

    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)

        print('imdb*******/n', imdb)

        print('Loaded dataset `{:s}` for training'.format(imdb_name))
        imdb.set_proposal_method("gt")
        # 设置proposal方法
        print('Set proposal method: gt')
        roidb = get_training_roidb(imdb)
        # 得到用于训练的roidb,定义在train.py,进行了水平翻转,以及为原始roidb添加了一些说明性的属性
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        # 如果大于一个,则进行combine roidb
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
        # get_imdb方法定义在factory.py中,通过名字得到imdb
    return imdb, roidb
Пример #4
0
def combined_roidb(imdb_names):
    """
    Combine multiple roidbs
    """

    def get_roidb(imdb_name):
        #实例化一个pascal_voc类对象
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))

        #为imbd.roidb_handler赋值为self.gt_roidb
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        #实例化一个pascal_voc类对象
        imdb = get_imdb(imdb_names)
    return imdb, roidb
Пример #5
0
def combined_roidb(imdb_names):
    """
    Combine multiple roidbs
    """

    if imdb_names.split('+').__len__() > 1:

        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb
Пример #6
0
def combined_roidb(imdb_names):
    """
    Combine multiple roidbs
    """
    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
Пример #7
0
def combined_roidb(imdb_names, training=True,  root_path=None):
    """
    Combine multiple roidbs
    """

    def get_training_roidb(imdb):
        """Returns a roidb (Region of Interest database) for use in training."""
        if cfg.TRAIN.USE_FLIPPED:
            print('Appending horizontally-flipped training examples...')
            imdb.append_flipped_images()

        if cfg.TRAIN.USE_VER_FLIPPED:
            print('Appending vertically-flipped training examples...')
            imdb.append_vertical_flipped_images()

        print('Preparing training data...')

        prepare_roidb(imdb)
        # ratio_index = rank_roidb_ratio(imdb)

        return imdb.roidb

    def get_roidb(imdb_name, root_path=None):
        imdb = get_imdb(imdb_name,  root_path)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))
        imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
        print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s, root_path=root_path) for s in imdb_names.split('+')]
    roidb = roidbs[0]

    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1], root_path)
        imdb = datasets.imdb.imdb(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names, root_path)

    if training:
        roidb = filter_roidb(roidb)
        return imdb, roidb
    else:
        ratio_list, ratio_index = rank_roidb_ratio(roidb)

        return imdb, roidb, ratio_list, ratio_index
Пример #8
0
 def get_roidb(imdb_name):
     imdb = get_imdb(imdb_name)
     print('Loaded dataset `{:s}` for training'.format(imdb.name))
     imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
     print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
     roidb = get_training_roidb(imdb)
     return roidb
Пример #9
0
def load_db(db_name):
    """
    TOR-related database
    """
    roidb = get_roidb(db_name)
    imdb = get_imdb(db_name)
    return imdb, roidb
Пример #10
0
def train_main(data_dir, model_dir, train_steps, input_yaml):
    cfg_from_file(input_yaml)
    print('Using config:')
    pprint.pprint(cfg)

    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))
    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain_model/VGG_imagenet.npy',
              max_iters=int(cfg.TRAIN.max_steps),
              restore=bool(int(cfg.TRAIN.restore)))
Пример #11
0
 def get_roidb(imdb_name):
     imdb = get_imdb(imdb_name)
     print('Loaded dataset `{:s}` for training'.format(imdb.name))
     imdb.set_proposal_method("gt")
     print('Set proposal method: {:s}'.format("gt"))
     roidb = get_training_roidb(imdb)
     return roidb
Пример #12
0
 def get_roidb(imdb_name):
   #imdb_name=voc_2007_trainval
   imdb = get_imdb(imdb_name)#imdb = pascal_voc(trainval, 2007)  pascal_voc是imdb的子类
   print('Loaded dataset `{:s}` for training'.format(imdb.name))#imdb.name= voc_2007_trainval
   imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)  #TRAIN.PROPOSAL_METHOD='gt'
   print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))#'gt'
   roidb = get_training_roidb(imdb)
   return roidb
Пример #13
0
 def get_roidb(imdb_name):
     # 调用factory文件中的get_imdb()方法
     imdb = get_imdb(imdb_name)  # imdb为调用get_imdb返回的pascal voc类对象
     print('Loaded dataset {:s}'.format(imdb.name))
     imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)  # gt
     print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
     roidb = get_training_roidb(imdb)
     return roidb
Пример #14
0
 def get_roidb(imdb_name):
     # 初始化了imdb,已经获取了一些基础配置
     imdb = get_imdb(imdb_name)
     print('Loaded dataset `{:s}` for training'.format(imdb.name))
     imdb.set_proposal_method("gt")
     print('Set proposal method: {:s}'.format("gt"))
     # 为imdb.roidb添加了一些配置,宽高,最大类别等
     roidb = get_training_roidb(imdb)
     return roidb
def get_roidb(imdb_name):  #本函数根据数据库名字 获取roidb

    imdb = get_imdb(imdb_name)  #调用factory 的 imdb 然后根据 数据库 名字 调用 pascal_voc
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)  #设置gt 的方法
    print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
    roidb = get_training_roidb(imdb)

    return imdb, roidb
Пример #16
0
 def get_roidb(imdb_name):
     # 获取voc 原始数据集
     imdb = get_imdb(imdb_name)
     print('Loaded dataset `{:s}` for training'.format(imdb.name))
     imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
     # print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
     # 制作并获取目标区域的位置信息
     roidb = get_training_roidb(imdb)
     return roidb
Пример #17
0
def GetRoidb(imdb_name):
    """
    Note: we need to run get_training_roidb sort of funcs later
    for now, it only supports single roidb.
    """

    imdb = get_imdb(imdb_name)
    roidb = imdb.roidb

    return imdb, roidb
Пример #18
0
    def get_roidb(imdb_name):
        #实例化一个pascal_voc类对象
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))

        #为imbd.roidb_handler赋值为self.gt_roidb
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        roidb = get_training_roidb(imdb)
        return roidb
 def get_roidb(imdb_name):
     # 构造了两个类:数据集类pascal_voc和图片类imdb
     imdb = get_imdb(imdb_name)
     print('Loaded dataset `{:s}` for training'.format(imdb.name))
     # 即选择真实物体groundtruth
     imdb.set_proposal_method("gt")
     print('Set proposal method: {:s}'.format("gt"))
     # 获得训练数据
     roidb = get_training_roidb(imdb)
     return roidb
Пример #20
0
def combined_roidb(imdb_names, training=True):
    def get_training_roidb(imdb):
        if cfg.TRAIN.USE_FLIPPED:  # USE_FLIPPED = True
            print('Appending horizontally-flipped training examples...')
            imdb.append_flipped_images()  # 水平翻转gt_boxes
            print('done')
        print('Prapareing training data...')
        prepare_roidb(imdb)  # roidb.prepare_roidb()
        # prepare_roidb对每张图片的roidb进行信息扩充,添加id,路径,宽高,box类别信息等
        #ratio_index = rank_roidb_ratio(imdb)
        print('done')
        return imdb.roidb

    def get_roidb(imdb_name):
        # 调用factory文件中的get_imdb()方法
        imdb = get_imdb(imdb_name)  # imdb为调用get_imdb返回的pascal voc类对象
        print('Loaded dataset {:s}'.format(imdb.name))
        imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)  # gt
        print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
        roidb = get_training_roidb(imdb)
        return roidb

    # s = 'voc_2007_trainval' 调用get_roidb()
    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]

    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = datasets.imdb.imdb(imdb_names, tmp.classes)
    else:
        # 由于前面定义的imdb对象在get_roidb函数中,若返回该对象需再次定义
        imdb = get_imdb(imdb_names)

    if training:
        roidb = filter_roidb(roidb)  # 过滤不含box的roidb

    ratio_list, ratio_index = rank_roidb_ratio(roidb)
    # 返回从小到大排序的ratio_list以及对应的原图roidb像索引
    return imdb, roidb, ratio_list, ratio_index
Пример #21
0
def combined_roidb(imdb_names):
    def get_roidb(imdb_name):
        # 初始化了imdb,已经获取了一些基础配置
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        # 为imdb.roidb添加了一些配置,宽高,最大类别等
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = imdb2(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)

        print('imdb*******/n', imdb)

        print('Loaded dataset `{:s}` for training'.format(imdb_name))
        imdb.set_proposal_method("gt")
        # 设置proposal方法
        print('Set proposal method: gt')
        roidb = get_training_roidb(imdb)
        # 得到用于训练的roidb,定义在train.py,进行了水平翻转,以及为原始roidb添加了一些说明性的属性
        return roidb
Пример #23
0
def combined_roidb(imdb_names):
    """
  Combine multiple roidbs
  """
    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))
        imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
        print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD))
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        tmp = get_imdb(imdb_names.split('+')[1])
        imdb = lib.datasets.imdb.imdb(imdb_names, tmp.classes)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
Пример #24
0
def get_roidb_limit_ram(imdb_name):
    """
    Note: we need to run get_training_roidb sort of funcs later
    for now, it only supports single roidb.
    """

    imdb = get_imdb(imdb_name)
    roidb = imdb.roidb

    assert isinstance(roidb, six.string_types), \
        "for limit ram vision, roidb should be a path."

    return imdb, roidb
Пример #25
0
def load_db(db_name):
    """
    TOR-related database
    """
    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)
        print('Loaded dataset `{:s}` for training'.format(imdb.name))
        imdb.set_proposal_method("gt")
        print('Set proposal method: {:s}'.format("gt"))
        roidb = get_training_roidb(imdb)
        return roidb
    
    roidb = get_roidb(db_name)
    imdb = get_imdb(db_name)
    return imdb, roidb
Пример #26
0
def from_dets(imdb_name, output_dir, args):
    imdb = get_imdb(imdb_name)
    imdb.competition_mode(args.comp_mode)
    imdb.config['matlab_eval'] = args.matlab_eval
    with open(os.path.join(output_dir, 'detections.pkl'), 'rb') as f:
        dets = pickle.load(f)

    if args.apply_nms:
        print('Applying NMS to all detections')
        nms_dets = apply_nms(dets, cfg.TEST.NMS)
    else:
        nms_dets = dets

    print('Evaluating detections')
    imdb.evaluate_detections(nms_dets, output_dir)
Пример #27
0
    def __init__(self, imdb_name, resize=True):
        imdb = get_imdb(imdb_name)
        # Ignore the background class!!! So ['gt_classes'] must minus 1.
        self.classes = [
            np.zeros(imdb.num_classes - 1) for i in range(imdb.num_images)
        ]
        for i, anno in enumerate(imdb.gt_roidb()):
            np.put(self.classes[i], map(lambda x: x - 1, anno['gt_classes']),
                   1)
            # np.put(self.classes[i], random.choice(map(lambda x: x-1, anno['gt_classes'])), 1)
        self.images = [imdb.image_path_at(i) for i in range(imdb.num_images)]
        assert len(self.classes) == len(self.images)

        self._perm = np.random.permutation(np.arange(len(self.images)))
        self._cur = 0
        self.resize = resize
Пример #28
0
def combined_roidb(imdb_names):
    def get_roidb(imdb_name):
        imdb = get_imdb(imdb_name)
        print 'Loaded dataset `{:s}` for training'.format(imdb.name)
        imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
        print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)
        roidb = get_training_roidb(imdb)
        return roidb

    roidbs = [get_roidb(s) for s in imdb_names.split('+')]
    roidb = roidbs[0]
    if len(roidbs) > 1:
        for r in roidbs[1:]:
            roidb.extend(r)
        imdb = datasets.imdb.imdb(imdb_names)
    else:
        imdb = get_imdb(imdb_names)
    return imdb, roidb
Пример #29
0
    print('Using config:')
    pprint.pprint(cfg)

    # if has model, get the name from it
    # if does not, then just use the initialization weights
    if args.model:
        filename = os.path.splitext(os.path.basename(args.model))[0]
    else:
        filename = os.path.splitext(os.path.basename(args.weight))[0]

    tag = args.tag
    tag = tag if tag else 'default'
    filename = tag + '/' + filename

    imdb = get_imdb(args.imdb_name)
    imdb.competition_mode(args.comp_mode)

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth = True

    # init session
    sess = tf.Session(config=tfconfig)
    # load network
    if args.backbone == 'vgg16':
        net = vgg16_ssh()
    elif args.backbone == 'res50':
        net = resnetv1_ssh(num_layers=50)
    elif args.backbone == 'res101':
        net = resnetv1_ssh(num_layers=101)
    elif args.backbone == 'res152':
Пример #30
0
        if last_snapshot_iter != self.solver.iter:
            self.snapshot()

def get_training_roidb(imdb):
    """Returns a roidb (Region of Interest database) for use in training."""
    if cfg.TRAIN.USE_FLIPPED:
        print 'Appending horizontally-flipped training examples...'
        imdb.append_flipped_images()
        print 'done'

    print 'Preparing training data...'
    rdl_roidb.prepare_roidb(imdb)
    print 'done'

    return imdb.roidb

def train_net(solver_prototxt, roidb, output_dir,
              pretrained_model=None, max_iters=40000):
    """Train a Fast R-CNN network."""
    sw = SolverWrapper(solver_prototxt, roidb, output_dir,
                       pretrained_model=pretrained_model)

    print 'Solving...'
    sw.train_model(max_iters)
    print 'done solving'

if __name__ == '__main__':
    from lib.datasets.factory import get_imdb
    a = train_net('models/VGG_CNN_M_1024/solver.prototxt', get_training_roidb(get_imdb('soton_ear')), output_dir=None)
    pass
import os.path

sys.path.append(os.getcwd())
this_dir = os.path.dirname(__file__)

from lib.fast_rcnn.train import get_training_roidb, train_net
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
Пример #32
0
    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    print 'Logs will be saved to `{:s}`'.format(log_dir)

    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network, imdb, roidb,
Пример #33
0
import os.path

sys.path.append(os.getcwd())
this_dir = os.path.dirname(__file__)

from lib.fast_rcnn.train import get_training_roidb, train_net
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network, imdb, roidb,
              output_dir=output_dir,