Пример #1
0
def train_main(data_dir, model_dir, train_steps, input_yaml):
    cfg_from_file(input_yaml)
    print('Using config:')
    pprint.pprint(cfg)

    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))
    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain_model/VGG_imagenet.npy',
              max_iters=int(cfg.TRAIN.max_steps),
              restore=bool(int(cfg.TRAIN.restore)))
Пример #2
0
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = args.output_dir  # get_output_dir(imdb, None)  ## benz
    if not os.path.exists(output_dir): os.makedirs(output_dir)
    os.system('cp ./lib/rpn_msr/generate_anchors.py %s' % (output_dir))
    os.system('cp ./lib/fast_rcnn/config.py %s' % (output_dir))
    os.system('cp ./experiments/cfgs/faster_rcnn_kitti.yml %s' % (output_dir))

    log_dir = get_log_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    print 'Logs will be saved to `{:s}`'.format(log_dir)

    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters,
              restore=bool(int(args.restore)))
Пример #3
0
if __name__ == '__main__':
    # 将text.yml的配置与默认config中的默认配置进行合并
    cfg_from_file('text.yml')
    print('Using config:~~~~~~~~~~~~~~~~')
    # 根据给定的名字,得到要加载的数据集
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    # 准备训练数据
    roidb = get_training_roidb(imdb)
    # 模型输出的路径
    # output_dir = get_output_dir(imdb, None)
    output_dir = './ckpt'
    # summary的输出路径
    log_dir = get_log_dir(imdb)
    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(
        network,
        imdb,
        roidb,
        output_dir=output_dir,
        log_dir=log_dir,
        pretrained_model='./pretrain_vggmodel/VGG_imagenet.npy',
        # pretrained_model='/home/xiaofeng/data/ctpn/pretrainde_vgg',
        # pretrained_model=None,
        max_iters=180000,
        restore=bool(int(1)))
Пример #4
0
from lib.fast_rcnn.train import get_training_roidb, train_net
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network, imdb, roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain_model/VGG_imagenet.npy',
              max_iters=int(cfg.TRAIN.max_steps),
              restore=bool(int(cfg.TRAIN.restore)))
Пример #5
0
    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    # device_name = '/gpu:'+str(CUDA_VISIBLE_DEVICES)
    # print(device_name)

    # 用vgg16训练
    training_flag = tf.placeholder(tf.bool)
    network = get_network('VGGnet_train', training_flag)
    pretrained_model = 'data/pretrain/VGG_imagenet.npy'

    # 用densenet作为骨干网络,不加载预训练权重
    # training_flag = tf.placeholder(tf.bool)
    # network = get_network('Densenet_train', training_flag)
    # pretrained_model = None

    train_net(network,
              training_flag,
              imdb,
              roidb,
              imdb_test,
              roidb_test,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=pretrained_model,
              max_iters=int(cfg.TRAIN.max_steps),
              restore=bool(int(cfg.TRAIN.restore)))
Пример #6
0
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('text.yml')
    print('Using config:~~~~~~~~~~~~~~~~')
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)
    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=
              '/home/zihao/Downloads/project/ctpn/ctpn/VGG_imagenet.npy',
              max_iters=180000,
              restore=bool(int(1)))
Пример #7
0
from lib.fast_rcnn.train import get_training_roidb, train_net
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network, imdb, roidb,
              output_dir = output_dir,
              log_dir = log_dir,
              pretrained_model = 'VGG_imagenet.npy',
              max_iters = 150000,
              restore = bool(int(cfg.TRAIN.restore)))
Пример #8
0
    # 将text.yml的配置与默认config中的默认配置进行合并
    cfg_from_file('text.yml')
    print('Using config:~~~~~~~~~~~~~~~~')
    # 根据给定的名字,得到要加载的数据集
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    # 准备训练数据
    roidb = get_training_roidb(imdb)
    # 模型输出的路径
    output_dir = get_output_dir(imdb, None)
    # summary的输出路径
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(
        network,
        imdb,
        roidb,
        output_dir=output_dir,
        log_dir=log_dir,
        pretrained_model=
        '/Users/xiaofeng/Code/Github/dataset/CHINESE_OCR/ctpn/pretrain/VGG_imagenet.npy',
        max_iters=180000,
        restore=bool(int(0)))
Пример #9
0
    print('Using config:~~~~~~~~~~~~~~~~')
    # 根据给定的名字,得到要加载的数据集
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    # 准备训练数据
    roidb = get_training_roidb(imdb)
    # 模型输出的路径
    output_dir = get_output_dir(imdb, None)
    # summary的输出路径
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(
        network,
        imdb,
        roidb,
        output_dir=output_dir,
        log_dir=log_dir,
        # pretrained_model=
        # '/Users/xiaofeng/Code/Github/dataset/CHINESE_OCR/ctpn/pretrain/VGG_imagenet.npy',
        # pretrained_model='/home/xiaofeng/data/ctpn/pretrainde_vgg',
        pretrained_model='/home/guyu/CHINESE-OCR/weight/VGG_imagenet.npy',
        max_iters=180000,
        restore=bool(int(1)))
Пример #10
0
        cfg_from_list(args.set_cfgs)

    cfg.GPU_ID = args.gpu_id

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)

    # set up caffe
    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)

    imdb, roidb = combined_roidb(args.imdb_name)
    print '{:d} roidb entries'.format(len(roidb))

    output_dir = get_output_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    train_net(args.solver,
              roidb,
              output_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)
if __name__ == '__main__':
    # 将text.yml的配置与默认config中的默认配置进行合并
    cfg_from_file('text.yml')
    print('Using config:~~~~~~~~~~~~~~~~')
    # 根据给定的名字,得到要加载的数据集
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    # 准备训练数据
    roidb = get_training_roidb(imdb)
    # 模型输出的路径
    output_dir = get_output_dir(imdb, None)
    # summary的输出路径
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=None,
              max_iters=180000,
              restore=bool(int(1)))
Пример #12
0
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg



if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    print 'Logs will be saved to `{:s}`'.format(log_dir)

    device_name = '/gpu:0'
    print device_name

    network = get_network('VGGnet_train')

    train_net(network, imdb, roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain/VGG_imagenet.npy',
              max_iters=180000,
              restore=bool(int(0)))
Пример #13
0
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    pprint.pprint(cfg)
    np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)
    print('total samples: {:d}'.format(len(roidb)))
    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    print 'Logs will be saved to `{:s}`'.format(log_dir)
    print 'use device /gpu:0'  # always use gpu 0
    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)
    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=args.pretrained_model,
              restore=args.restore)
Пример #14
0
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:1'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(
        network,
        imdb,
        roidb,
        output_dir=output_dir,
        log_dir=log_dir,
        pretrained_model=
        '/home/alex/source/text-detection-ctpn/data/pretrain/VGG_imagenet.npy',  # data/pretrain/VGG_imagenet.npy
        max_iters=int(cfg.TRAIN.max_steps),
        restore=bool(int(cfg.TRAIN.restore)))
Пример #15
0
    print('Using config:')
    imdb = get_imdb('voc_2007_train')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, 'textline_v4')
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')
    pprint.pprint(cfg)
    # print(bool(int(cfg.TRAIN.restore)))
    # print(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)
    # print(cfg.TRAIN.restore)
    # assert 0
    train_net(
        network,
        imdb,
        roidb,
        output_dir=output_dir,
        log_dir=log_dir,
        pretrained_model='data/pretrain/VGG_imagenet.npy',
        max_iters=int(cfg.TRAIN.max_steps),
        pretrained_dir=
        '/home/CORP/yaqi.wang/pycharm/detection/text-detection-ctpn/model/textline_v4',
        restore=bool(int(cfg.TRAIN.restore)))
Пример #16
0
this_dir = os.path.dirname(__file__)

from lib.fast_rcnn.train import get_training_roidb, train_net
from lib.fast_rcnn.config import cfg_from_file, get_output_dir, get_log_dir
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    # print('Using config:')
    # pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval', cfg.DATA_DIR + '/template_generative')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))


    network = get_network('VGGnet_train')

    train_net(network, imdb, roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain/VGG_imagenet.npy',
              max_iters=int(cfg.TRAIN.max_steps),
              restore=cfg.TRAIN.restore)
Пример #17
0
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network,
              imdb,
              roidb,
              output_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)
from lib.datasets.factory import get_imdb
from lib.networks.factory import get_network
from lib.fast_rcnn.config import cfg

if __name__ == '__main__':
    cfg_from_file('ctpn/text.yml')
    print('Using config:')
    pprint.pprint(cfg)
    imdb = get_imdb('voc_2007_trainval')
    print('Loaded dataset `{:s}` for training'.format(imdb.name))
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print('Output will be saved to `{:s}`'.format(output_dir))
    print('Logs will be saved to `{:s}`'.format(log_dir))

    device_name = '/gpu:0'
    print(device_name)

    network = get_network('VGGnet_train')

    train_net(network,
              imdb,
              roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model='data/pretrain/VGG_imagenet.npy',
              max_iters=180000,
              restore=bool(int(0)))
Пример #19
0
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
    imdb = get_imdb(args.imdb_name)
    print 'Loaded dataset `{:s}` for training'.format(imdb.name)
    roidb = get_training_roidb(imdb)

    output_dir = get_output_dir(imdb, None)
    log_dir = get_log_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)
    print 'Logs will be saved to `{:s}`'.format(log_dir)

    device_name = '/gpu:{:d}'.format(args.gpu_id)
    print device_name

    network = get_network(args.network_name)
    print 'Use network `{:s}` in training'.format(args.network_name)

    train_net(network, imdb, roidb,
              output_dir=output_dir,
              log_dir=log_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters,
              restore=bool(int(args.restore)))